Introduction to Real-Time PCR and CFX System

Life Science Group

Generations of PCR

Gel Electrophoresis (qualitative)

Real-Time PCR (indirect quantification)

Droplet Digital PCR (absolute quantification)

Targeted DNA replication using thermostable DNA polymerase

DENATURE

The use of two primers allows targeting of specific sequences

Primers are complementary to opposite strands of target region but not complementary to any other sequences

ANNEAL PRIMERS

Taq polymerase synthesizes DNA complementary to template in 5` to 3` direction

EXTEND STRANDS 72°C

Life Science Group

Each cycle of PCR doubles the number of progeny DNA duplexes (which can then act as template as well) 1 cycle = 2^1 copies of starting template 25 cycles = 2^{25} copies of starting template (~33554432)

Reality vs. Theory

Amplification is exponential, but the exponential increase is limited:

- A linear increase follows exponential
- Eventually plateaus

Real-Time PCR allows us to 'see' the exponential phase so we can calculate how much we started with.

Cycle #

Amplify target DNA with end point analysis to distinguish products
 No relationship between end point and starting target copies

End point analysis

qPCR Principle

- Record target-specific fluorescence during the PCR and then determination Cq
 Value for sample
- An inverse, linear relationship exists between the logarithm of the initial target quantity and the Cq
- Signal threshold determines Cq value (formerly Ct)
- Logarithmic base 2 scale

Determining Threshold and Cq

11

 $X_n = X_0 (1+E)^n$

Life Science Group

Determining Threshold and Cq

Normal view versus Log view Amplification 10^{4} 14 12 10 RFU (10^3)

C_T value v.s. concentration

20

Cycles

• 1 cycle = 2 fold difference

10

- •3.32 cycles \approx 10 fold difference $Y = N_0 2^n$
- Assumes 100% efficiency

Life Science Group

8

2

0 0

Y=N₀ (1+E)ⁿ

12

Create a **standard curve** with 10-fold serial dilutions of PCR product – assign arbitrary values

Compare values from standards with values for unknown sample

Standard Curves

A standard curve allows you to determine the efficiency of your assay

C_T is linear with the log of starting copy number (standard curve)

The slope of the standard curve can be directly correlated to the efficiency of the reactions: r = is a measure of how well the actual data fit to the standard curve.

= (explained variation/total variation)

Aim for R value (Correlation Coefficient) of ≥0.98

when slope = -3.32, Efficiency = 100%

Efficiency (E) = $[10^{(-1/slope)}] - 1$

Life Science Group

CONTRACTOR OF

Efficiency Requirements

 Assay design 				 Assay design 		
– Secondary structures?			– Secondary structures?			
– Primer-dimers?				– Primer-dimers?		
- No	onspecific ampl	ification		 Nonspecific amplification 		
 Pipet 	ting?	Target	 Pipettina? 			
• Diluti	on errors?	laiget	 Dilution errors? 			
				 PCR inhibitors? 		
\langle		<80%		>120%		
E	Slope					
0.5	-5.679					
0.6	-4.899	Slope [1/log (1.	+E)]	Aim for Efficiency Values:		
0.7	-4.339		┶┍╢			
0.8	-3.917	$\log (1+E) = - (1/s)c$	ope)	Good = 90 – 110%		
0.9	-3.587	$E = 10^{[-1/slope]} - 2$	1	Eantastic = 95 - 105%		
1	-3.322					
1.1	-3.103					
1.2	-2.920	-		BIO RAD		
1.3	-2.765			16		

- Threshold Cycle values (C_T) have a direct relationship to the amount of starting template
- Check space between C_T values follows correct relationship (100% efficiency) 2ⁿ = fold dilution
- Efficiency of reactions between 90-110%
- R value should be ≥0.98

What are the most common detection strategies used for Real-Time PCR?

Life Science Group

- The fluorescent molecules can be used
 - Non-specific DNA binding dyes
 - SYBR[®] Green I
 - Specific Hybridization Probes/Primers
 TaqMan[™]

Real-Time Chemistry: SYBR Green

- fluorescence increases when bound to dsDNA
- As dsDNA accumulates, more dye binds the DNA and the fluorescence increase

.

λ M

.

Intercalation dyes: SYBR and EvaGreen

Advantages

- Intercalation dyes-based assays are more economical than probes-based ones
- Allow melt curve analysis to test assay specificity

Disadvantages

- You can not multiplex with dyes
- Dyes do not discriminate and will bind any dsDNA in your sample
 - This includes primer dimers
 - Problems if assay is not specific

Fluorescence decrease as the temperature increase:

- 1. DNA strands start to separate
- 2. SYBR green looses its binding to the DNA
- 3. Fluorescence rapidly decreases

-The melting temperature of the amplicon can easily be detected. -Contaminating DNA, primer dimer or false priming is seen as an additional peak.

Life Science Group

Melt Curve Analysis

Multiple wells, same assay, single peaks at high melting temperatures (+80°C). This means my assay is specific!

Multiple wells, same assay, multiple peaks! This means off-target amplification and/or primer dimers!

Real-Time Chemistry: Probes (TaqMan)

- Target specific hybridization probe
- 5' reporter and 3' quencher
- Utilizes FRET (Fluorescence Resonance Energy Transfer) quenching
- Relies on a validated primer set with high specificity

Mechanism of probe chemistry

- 1. During PCR, probe hybridizes to target sequence
- 2. Probe is partially displaced during extension
- 3. Probe cleaved by 5'- 3' nuclease activity of polymerase, releasing reporter from quencher
- 4. Illuminated reporter exhibits unquenched fluorescence

Hybridization probes

Advantages

- Allows multiplexing by using different reporter dye
- Removes concerns about primer dimers and offtarget amplifications (More specific)
- SNP genotyping application

Disadvantages

- More expensive than dye-based assays
- To test assay specificity you'll need to run products on gels

Gel confirmation

- Is your sample limited or rare?
- Is time-to-results a very significant constraint?
- Are you differentiating similar sequences?
- Do you have specificity concerns?
- Do you need multiple data points out of the same sample?

34

Real-time PCR Sample Preparation

SYBR Green Chemistry

Component	Volume per reaction	Final concentration
iQ SYBR Green Supermix	25 µl	1X
Primer 1	×μl	100 nM–500 nM
Primer 2	×μl	100 nM–500 nM
Sterile water	×μl	
DNA template	×μl	
Total Volume	50 µl	

Component	Volume per reaction	Final concentration
iQ Supermix	25 µl	1X
Primer 1	×μl	100 nM–500 nM
Primer 2	×μl	100 nM–500 nM
Probe	×μ	100 nM–500 nM
Sterile water	×μ	
DNA template	x µl	
Total Volume	50 µl	

Probe Chemistry

Hot Start

PCR

Melting Curve

Cycle 1	Cycle 2 40X		Cycle 3	Cycle 4	Cycle 5 81X
Step 1	Step 1	Step 2	Step 1	Step 1	Step 1
95.0	95.0	55.0	95.0	55.0	55.0
3:00	0:10	0:30	1:00	1:00	0:10
		¢			¢

3 Step PCR

130 min total in incubations

Total time 2 hours 56 minutes

Total time 1 hour 36 minutes

•Relative Quantity (△CT)

- -Not normalized
- -Normalization accomplished via equal loading of samples
- -Post analysis normalization

Normalized Expression (△△CT)

- -Accounts for loading differences
- -Usually normalize to reference gene
- -Relative quantity of Target is normalized by the relative quantity of the reference genes

	Target
Tissue #1:	22
Tissue #2:	24
Delta Ct:	24-22 = 2

Fold induction = $2^2 = 4$

Normalized Expression ($\Delta\Delta CT$)

2 nd Delta	Delta Ct:		1-4 = -3
1 st Della	Delta Ct #2:		24- <u>20</u> = 4
1st Dalta	Delta Ct #1:		22-21 = 1
Tissue	#2 (Test) :	20	24
Tissue #1 (Control):		21	22
		Reference	Target

Fold induction = $2^{-(-3)} = 8$

Pfaffl modification

			Primer set #1 Reference	Primer set #2 Target
	Tissue #1	(Control):	21	22
	Tissue #2	(Test) :	20	24
From Standard	curve)	Efficiency:	90% = 1.9	100% = 2
		Delta Ct:	20-21 = -1	24-22 = 2
Fold	induction	$u = \frac{2_{\text{target}}}{1.9_{\text{reference}}}^{\text{deltaCt}} u_{\text{target}}$	$_{arget} (24-22 = 2)$ eltaCt _{reference} $(20-21 = -1)$	$=\frac{4}{0.56}=7.1$

• Δ Ct method: (*no reference gene*)

–Fold induction : 4

•∆∆Ct method: (*reference gene*)

-Fold induction : 8

PfaffI modification: (reference gene and efficiency)

–Fold induction : 7.1

Remember...

Real-Time PCR is not 'cookbook chemistry' - a real-time instrument will not optimize your experiments for you

However, once you do **optimize your reactions**, you will get **reproducible, accurate results**

Assay and Primer Design

- Primer design considerations
 - -Assay type (SYBR vs Probe/TaqMan)
 - -Exonic vs intron spanning
 - -Selection of primary genome viewer (NCBI, Ensembl, UCSC)
 - -SNP locations
 - -Selection of best fragments for optimal transcript coverage and maximum intron size
 - -Secondary structures (UNAfold)
 - -Specificity (BiSearch)

Choosing between intron/exon coverage

Exonic designs

- Assay completely located within a single exon
- Amplifes both cDNA & gDNA
- gDNA can be used as positive control
- Can be applied to all genes

Intron-spanning designs

- At least one intron between forward & reverse primer
- Limits co-amplification of contaminating gDNA
- Not possible for single exon genes or genes with small introns (~ 9% of the genome)
- May not help for genes with processed pseudogenes (~15% of genome)
- Decreased design space

Primer3Plus Primer Design

<u>http://www.primer3plus.com</u>

Primer3Plus pick primers from a DNA sequence	e		<u>More</u> <u>Help</u>		Source Code About	
Load server settings: Default Task: pick_detection_primers	Activate Settings *	Select primer pairs t sequence. Optionall included/excluded re	to detect the given template y targets and egions can be specified.	Picl	k Primers Rese	t Form
Main General Settings	Advanced Settings	Internal Oligo	Penalty Weights	Adv	anced Sequence	1
Sequence Id: Paste template sequence below	Or upload sequence	; file:	Bladeren	Upload	File	

- PCR settings
 - mix_salt_divalent
 - mix_salt_monovalent
 - mix_dntp_conc
 - mix_dna_conc
 - mix_pcr_temperature
- amplicon properties
 amplicon_size
- Tm prediction
 - SantaLucia 1998
- primer properties
 - primer_size
 - primer_tm
 - primer_max_tm_diff
 - primer_gc
 - primer_max_3prime_gc
 - primer_max_3_poly
 - primer_max_self_end
 - primer_max_self_any
 - primer_pair_max_compl_end

Culture and the second

Assays – What are your choices?

- Design new assays
 - -Take advantage of the latest information and design tools and do the proper wet-lab validation in order to meet MIQE guidelines
- Use existing custom designed assays
 - -Possible unknown design criteria
 - -Have they been validated to MIQE standards?
- Use pre-designed assays from a vendor
 - -Unknown design criteria (for most)
 - -In-silico validation vs. wet-lab validation
 - Not all assays are created equally!
 - Bio-Rad's PrimePCR assays/plate arrays
 - -www.Bio-Rad.com/PrimePCR

PrimePCR Assays

Available Species

Human	Rabbit
Mouse	Rhesus Monkey
Rat	Yeast
Chicken	Zebrafish
Arabidopsis	Cow
Pig	Dog
	Rice

Also: Human IncRNA assays!

www.bio-rad.com/PrimePCR

PrimePCR Pathway & Collection Panels

Cancer (133)
Cardiac hypertrophy (7)
Cardiovascular diseases
Congenital, hereditary, a

Diseases

diseases (15) editary, and neonatal diseases and abnormalities (73) Cystic fibrosis (37) Digestive system diseases (13) Endocrine system diseases (20) Hemic and lymphatic diseases (51) Immune system diseases (53) Mental disorders (11) Musculoskeletal diseases (6) Nervous system diseases (16) Nutritional and metabolic diseases (46) Respiratory tract diseases (31) Skin and connective tissue diseases (19)

-

96-well	384-well
ABI 7300 - 96	ABI 7900 - 384
ABI 7500 - 96 Fast	ABI QuantStudio - 384
ABI 7500 - 96 Std	ABI VIIA 7 - 384
ABI 7900 - 96 Fast	Bio-Rad CFX384
ABI 7900 - 96 Std	Bio-Rad CFX384 Touch
ABI QuantStudio - 96 Fast	Roche LC480 - 384
ABI QuantStudio - 96 Std	
ABI StepOnePlus - 96	
ABI VIIA 7 - 96 Fast	
ABI VIIA 7 - 96 Std	
Bio-Rad CFX Connect - 96	
Bio-Rad CFX96	
Bio-Rad CFX96 Touch	
Bio-Rad Chromo4 - 96	
Bio-Rad iQ - 96	
Bio-Rad iQ5 - 96	
Bio-Rad MyiQ - 96	
Bio-Rad MyiQ2 - 96	
Bio-Rad Optic on - 96	
Bio-Rad Optic on 2 - 96	
Eppendorf Realplex - 96	
Roche LC480 - 96	
Stratagene Mx - 96	

abolism

no acid metabolism (4) pohydrate metabolism (4) I metabolism (5) leotide metabolism (3) ulation of lipid metabolism (3) pid metabolism (5) nin and cofactor abolism (4) pbiotic metabolism (6)

- Technical vs. Biological replication
 - Reviewers typically like technical triplicates
 - Smaller fold changes require a higher *n* of samples
- Multiple reference genes can stabilize basal gene expression
 - Critical if you measure small fold changes

BIO RAD

Example well:

3 ul of water

5 ul template

10 ul of 2x Supermix

(dNTPs/Tag/Mg++/Buffer)

1 ul of 20x diluted F+R primer mix

- Volumes matter!
 - St Dev goes up as volume of reaction goes down
 - Avoid pipetting small volumes (1-2 ul)
 - Better to add more of a diluted template

- Make up a master mix of everything minus template
 - Usually total samples +10% always need overage
 - Minimize error, lower total pipetting steps

- Non-template control (NTC)
 - Add water in lieu of template
 - Any signal before cycle 38 should be checked
 - Either due to primer dimers or contamination
 - Best to have one NTC well per assay (primer set)
- No reverse transcription (NRT)
 - Checks for DNA carry over in your RNA purification
 - Add equivalent amount of non-converted RNA as you did cDNA
 - $-\Delta Cq$ to cDNA should be above ~4 cycles
 - More important on a per sample/prep basis

- Negative control (Neg)
 - Add template from another species/system/knock-out that does not contain your sequence of interest
 - Differs from NTC checks for specificity
 - Essential to catch off target effects early
- Positive control (Pos)
 - Add your template of interest
 - Look for a signal <Cq=30
 - Used primarily in troubleshooting inhibitory samples

Experiment design

Sample maximization method

	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3	4	5	6	7	8	9	10	11	12
A	Unk-1 Actb	Unk-1 Actb	Unk-1 Actb	Unk-9 Actb	Unk-9 Actb	Unk-9 Actb	Unk-17 Actb	Unk-17 Actb	Unk-17 Actb	Unk-25 Actb	Unk-25 Actb	Unk-25 Actb	A	Unk-1 GAPDH	Unk-1 GAPDH	Unk-1 GAPDH	Unk-9 GAPDH	Unk-9 GAPDH	Unk-9 GAPDH	Unk-17 GAPDH	Unk-17 GAPDH	Unk-17 GAPDH	Unk-25 GAPDH	Unk-25 GAPDH	Unk-25 GAPDH
	Unk-2	Unk-2	Unk-2	Unk-10	Unk-10	Unk-10	Unk-18	Unk-18	Unk-18	Unk-26	Unk-26	Unk-26		Unk-2	Unk-2	Unk-2	Unk-10	Unk-10	Unk-10	Unk-18	Unk-18	Unk-18	Unk-26	Unk-26	Unk-26
В	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	В	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH
	Unk-3	Unk-3	Unk-3	Unk-11	Unk-11	Unk-11	Unk-19	Unk-19	Unk-19	Unk-27	Unk-27	Unk-27		Unk-3	Unk-3	Unk-3	Unk-11	Unk-11	Unk-11	Unk-19	Unk-19	Unk-19	Unk-27	Unk-27	Unk-27
	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Ľ	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH
D	Unk-4 Actb	Unk-4 Actb	Unk-4 Actb	Unk-12 Actb	Unk-12 Actb	Unk-12 Actb	Unk-20 Actb	Unk-20 Actb	Unk-20 Actb	Unk-28 Actb	Unk-28 Actb	Unk-28 Actb	D	Unk-4 GAPDH	Unk-4 GAPDH	Unk-4 GAPDH	GAPDH	GAPDH	Unk-12 GAPDH	GAPDH	Unk-20 GAPDH	Unk-20 GAPDH	Unk-28 GAPDH	Unk-28 GAPDH	Unk-28 GAPDH
F	Unk-5	Unk-5	Unk-5	Unk-13	Unk-13	Unk-13	Unk-21	Unk-21	Unk-21	Unk-29	Unk-29	Unk-29		Unk-5	Unk-5	Unk-5	Unk-13	Unk-13	Unk-13	Unk-21	Unk-21	Unk-21	Unk-29	Unk-29	Unk-29
	ACID	ACID	ACID	ACID	ACID	ACID	ACID	ACID	ACID	ACID	ACID	ACID	1	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH
F	Unk-6 Actb	Unk-6 Actb	Unk-6 Actb	Actb	Actb	Unk-14 Actb	Unk-22 Actb	Unk-22 Actb	Unk-22 Actb	Actb	Unk-30 Actb	Unk-30 Actb	F	Unk-6 GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH
	Unk-7	Unk-7	Unk-7	Unk-15	Unk-15	Unk-15	Unk-23	Unk-23	Unk-23	NTC	NTC	NTC	I	Unk-7	Unk-7	Unk-7	Unk-15	Unk-15	Unk-15	Unk-23	Unk-23	Unk-23	NTC	NTC	NTC
G	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	G	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH
v	Unk-8	Unk-8	Unk-8	Unk-16	Unk-16	Unk-16	Unk-2	Nak-24	Unk-24					Unk-8	Unk-8		k-16	Unk-16	Unk-16	Unk-24	Unk-24	Unk-24			
л	Acto	Acto	ACTD	ACTD	Acto	Acto		A.0	ACID				н	GAPDH	APDH	GAP	GAPDH	A PDH	GAPDH	GAPDH	GAPDH	GAPDH			
					Act	tb		J	U	U	U		U		1			Y	APDH	[
	1	2	2																				,	1	
Å	Unk-1		3	4	5	6	7	8	9	10	11	12		1	2	3	4	5	6	7	8	9	10	11	12
	P53	Unk-1 P53	Unk-1 P53	4 Unk-9 P53	5 Unk-9 P53	6 Unk-9 P53	7 Unk-17 P53	8 Unk-17 P53	9 Unk-17 P53	10 Unk-25 P53	11 Unk-25 P53	12 Unk-25 P53	A	1 Unk-1 EGFR	2 Unk-1 EGFR	3 Unk-1 EGFR	4 Unk-9 EGFR	5 Unk-9 EGFR	6 Unk-9 EGFR	7 Unk-17 EGFR	8 Unk-17 EGFR	9 Unk-17 EGFR	10 Unk-25 EGFR	11 Unk-25 EGFR	12 Unk-25 EGFR
	P53	Unk-1 P53 Unk-2	Unk-1 P53 Unk-2	4 Unk-9 P53 Unk-10	5 Unk-9 P53 Unk-10	6 Unk-9 P53 Unk-10	7 Unk-17 P53 Unk-18	8 Unk-17 P53 Unk-18	9 Unk-17 P53 Unk-18	10 Unk-25 P53 Unk-26	11 Unk-25 P53 Unk-26	12 Unk-25 P53 Unk-26	A	1 Unk-1 EGFR Unk-2	2 Unk-1 EGFR Unk-2	3 Unk-1 EGFR Unk-2	4 Unk-9 EGFR Unk-10	5 Unk-9 EGFR Unk-10	6 Unk-9 EGFR Unk-10	7 Unk-17 EGFR Unk-18	8 Unk-17 EGFR Unk-18	9 Unk-17 EGFR Unk-18	10 Unk-25 EGFR Unk-26	11 Unk-25 EGFR Unk-26	12 Unk-25 EGFR Unk-26
В	P53 Unk-2 P53	Unk-1 P53 Unk-2 P53	Unk-1 P53 Unk-2 P53	4 P53 Unk-10 P53	5 Unk-9 P53 Unk-10 P53	6 Unk-9 P53 Unk-10 P53	7 Unk-17 P53 Unk-18 P53	8 Unk-17 P53 Unk-18 P53	9 Unk-17 P53 Unk-18 P53	10 Unk-25 P53 Unk-26 P53	11 Unk-25 P53 Unk-26 P53	12 Unk-25 P53 Unk-26 P53	A	1 EGFR Unk-2 EGFR	2 Unk-1 EGFR Unk-2 EGFR	3 Unk-1 EGFR Unk-2 EGFR	4 Unk-9 EGFR Unk-10 EGFR	5 Unk-9 EGFR Unk-10 EGFR	6 Unk-9 EGFR Unk-10 EGFR	7 Unk-17 EGFR Unk-18 EGFR	8 Unk-17 EGFR Unk-18 EGFR	9 Unk-17 EGFR Unk-18 EGFR	10 Unk-25 EGFR Unk-26 EGFR	11 Unk-25 EGFR Unk-26 EGFR	12 Unk-25 EGFR Unk-26 EGFR
B C	P53 Unk-2 P53 Unk-3 P53	Unk-1 P53 Unk-2 P53 Unk-3 P53	Unk-1 P53 Unk-2 P53 Unk-3 P53	4 Unk-9 P53 Unk-10 P53 Unk-11 P53	5 Unk-9 P53 Unk-10 P53 Unk-11 P53	6 Unk-9 P53 Unk-10 P53 Unk-11 P53	7 Unk-17 P53 Unk-18 P53 Unk-19 P53	8 Unk-17 P53 Unk-18 P53 Unk-19 P53	9 Unk-17 P53 Unk-18 P53 Unk-19 P53	10 Unk-25 P53 Unk-26 P53 Unk-27 P53	11 Unk-25 P53 Unk-26 P53 Unk-27 P53	12 Unk-25 P53 Unk-26 P53 Unk-27 P53	A B C	1 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR	2 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR	3 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR	4 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR	5 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR	6 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR	7 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR	8 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR	9 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR	10 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR	11 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR	12 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR
BC	P53 Unk-2 P53 Unk-3 P53 Unk-4	Unk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4	Unk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4	4 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 D52	5 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12	6 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12	7 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 D52	8 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20	9 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20	10 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28	11 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28	12 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 D53	A B C	1 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4	2 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4	3 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4	4 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12	5 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12	6 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12	7 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20	8 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20	9 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20	10 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28	11 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28	12 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28
B C D	P53 Unk-2 P53 Unk-3 P53 Unk-4 P53	Unk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4 P53	Unk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4 P53	4 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53	5 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53	6 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53	7 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53	8 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53	9 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53	10 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53	11 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53	12 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53	A B C D	1 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR	2 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR	3 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR	4 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR	5 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR	6 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR	7 Unk-17 EGFR Unk-18 EGFR Unk-20 EGFR	8 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20 EGFR	9 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20 EGFR	10 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR	11 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR	12 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR
B C D E	P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53	Unk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53	Junk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53	4 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53	5 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53	6 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53	7 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53 Unk-21 P53	8 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53 Unk-21 P53	9 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53 Unk-21 P53	10 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53 Unk-29 P53	11 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53 Unk-29 P53	12 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53 Unk-29 P53	A B C D E	1 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR	2 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR	3 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR	4 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-13 EGFR	5 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-13 EGFR	6 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-13 EGFR	7 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20 EGFR Unk-21 EGFR	8 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20 EGFR Unk-21 EGFR	9 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20 EGFR Unk-21 EGFR	10 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR Unk-29 EGFR	11 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR Unk-29 EGFR	12 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR Unk-29 EGFR
B C D E	P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53 Unk-6 P53	Unk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53 Unk-6 P53	3 Unk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53 Unk-6	4 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53 Unk-14 P53	5 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53 Unk-14 P53	6 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53 Unk-14 P53	7 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53 Unk-21 P53 Unk-22 P53	8 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53 Unk-21 P53 Unk-22 P53	9 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53 Unk-21 P53 Unk-22 P53	10 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53 Unk-29 P53 Unk-29 P53	11 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-29 P53 Unk-29 P53 Unk-30 P53	12 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53 Unk-29 P53 Unk-29 P53 Unk-29 P53	A B C D E	1 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR	2 Unk-1 EGFR EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR	3 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR Unk-6	4 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-13 EGFR Unk-14	5 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-13 EGFR Unk-14	6 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-13 EGFR Unk-14	7 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20 EGFR Unk-21 EGFR	8 Unk-17 EGFR Unk-18 EGFR Unk-20 EGFR Unk-21 EGFR Unk-22	9 Unk-17 EGFR Unk-18 EGFR Unk-20 EGFR Unk-21 EGFR Unk-22	10 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-29 EGFR Unk-30 EGFR	11 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR Unk-29 EGFR Unk-30	12 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR Unk-29 EGFR Unk-30 EGFR
B C D E F	P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53 Unk-6 P53 Unk-6	Unk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53 Unk-6 P53 Unk-7	3 Unk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53 Unk-6 P53 Unk-6	4 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53 Unk-14 P53	5 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53 Unk-14 P53	6 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53 Unk-14 P53	7 Unk-17 PS3 Unk-18 PS3 Unk-19 PS3 Unk-20 PS3 Unk-21 PS3 Unk-22 PS3 Unk-22	8 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53 Unk-21 P53 Unk-22 P53	9 Unk-17 P53 Unk-18 P53 Unk-19 P53 Unk-20 P53 Unk-21 P53 Unk-22 P53	10 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53 Unk-29 P53 Unk-30 P53	11 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53 Unk-29 P53 Unk-30 P53	12 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53 Unk-29 P53 Unk-30 P53 UNK-30 P53	A B C D E F	1 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR Unk-6 EGFR	2 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-5 EGFR Unk-5 EGFR Unk-6 EGFR	3 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR Unk-6 EGFR	4 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-13 EGFR Unk-14 EGFR Unk-14	5 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-13 EGFR Unk-14 EGFR	6 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-13 EGFR Unk-14 EGFR	7 Unk-17 EGFR Unk-18 EGFR Unk-20 EGFR Unk-21 EGFR Unk-22 EGFR	8 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20 EGFR Unk-21 EGFR Unk-22	9 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20 EGFR Unk-21 EGFR Unk-22	10 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR Unk-29 EGFR Unk-30 EGFR	11 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR Unk-29 EGFR Unk-30 EGFR	12 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR Unk-29 EGFR Unk-30 EGFR
B C D E F G	P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53 Unk-5 P53 Unk-6 P53 Unk-7	Unk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53 Unk-6 P53 Unk-7 P53	Junk-1 P53 Unk-2 P53 Unk-3 P53 Unk-4 P53 Unk-5 P53 Unk-6 P53 Unk-6 P53	4 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53 Unk-14 P53 Unk-15 P53	5 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53 Unk-14 P53 Unk-15 P53	6 Unk-9 P53 Unk-10 P53 Unk-11 P53 Unk-12 P53 Unk-13 P53 Unk-14 P53 Unk-15 P53	7 Unk-17 P53 Unk-18 P53 Unk-20 P53 Unk-21 P53 Unk-21 P53 Unk-22 P53 Unk-23 P53	8 Unk-17 P53 Unk-18 P53 Unk-20 P53 Unk-20 P53 Unk-21 P53 Unk-22 P53	9 Unk-17 P53 Unk-18 P53 Unk-20 P53 Unk-20 P53 Unk-21 P53 Unk-22 P53 Unk-23 P53	10 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-28 P53 Unk-29 P53 Unk-30 P53 NTC P53	11 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-29 P53 Unk-29 P53 Unk-30 P53	12 Unk-25 P53 Unk-26 P53 Unk-27 P53 Unk-29 P53 Unk-29 P53 Unk-30 P53 NTC P53	A B C D E F G	1 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR Unk-6 EGFR	2 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR Unk-6 EGFR Unk-7 EGFR	3 Unk-1 EGFR Unk-2 EGFR Unk-3 EGFR Unk-4 EGFR Unk-5 EGFR Unk-6 EGFR	4 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-13 EGFR Unk-14 EGFR	5 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-13 EGFR Unk-14 EGFR	6 Unk-9 EGFR Unk-10 EGFR Unk-11 EGFR Unk-12 EGFR Unk-14 EGFR Unk-15 EGFR	7 Unk-17 EGFR Unk-18 EGFR Unk-19 EGFR Unk-20 EGFR Unk-21 EGFR Unk-21 EGFR Unk-23 EGFR	8 Unk-17 EGFR Unk-19 EGFR Unk-20 EGFR Unk-21 EGFR Unk-21 EGFR Unk-22 EGFR	9 Unk-17 EGFR Unk-19 EGFR Unk-20 EGFR Unk-21 EGFR Unk-21 EGFR Unk-22 EGFR	10 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-29 EGFR Unk-30 EGFR	11 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-28 EGFR Unk-29 EGFR Unk-30 EGFR	12 Unk-25 EGFR Unk-26 EGFR Unk-27 EGFR Unk-29 EGFR Unk-29 EGFR Unk-30 EGFR

P53

Life Science Group

EGFR

60

Experiment design

Someone did lay-out like this...

	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3	4	5	6	7	8	9	10	11	12
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk		Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
A	. Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	A	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb
	1	1	1	3	3	3	5	5	5	7	7	7		8	8	8	10	10	10	12	12	12	14	14	14
Þ	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	ъ	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
	GAPD	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH 7	GAPDH 7	GAPDH 7	Б	GAPDH	GAPDH	GAPDH	GAPDH 10	GAPDH 10	GAPDH 10	12 12	12	GAPDH 12	GAPDH 14	GAPDH 14	GAPDH 14
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk		Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
l c	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	С	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53
-	1	1	1	3	3	3	5	5	5	7	7	7	-	8	8	8	10	10	10	12	12	12	14	14	14
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk		Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
D	EGFF	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	D	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR
	1	1	1	3	3		1 1	2	3	4	5	6	7	8	9	10	11	12	10	12	12	12	14	14	14
	Unk	Unk	Unk	Unk	Unk	U U			-	Unk	Unk	Unk							Unk	Unk	Unk	Unk	NTC	NTC	NTC
E	Acto	Acto	Acto	Acto	Acto	1 A				Actb	Actb	Actb							Actb	Acto	Acto	Actb	Actb	Actb	Actb
	Link	Unk	Link	Unk	Hak					29	29	29							link	Unk	Unk	Unk	NTC	NTC	NTC
F	GAPD	H GAPDH	GAPDH	GAPDH	GAPDH	GA				Unk	Unk	Unk							APDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH
-	2	2	2	4	4	В				GAPDH	GAPDH	GAPDH							11	13	13	13	0	0	0
	Unk	Unk	Unk	Unk	Unk	U		-			29	2						_	Unk	Unk	Unk	Unk	NTC	NTC	NTC
G	P53	P53	P53	P53	P53	F					C.	Ur							P53	P53	P53	P53	P53	P53	P53
	2	2	2	4	4	L L													11	13	13	13			
	Unk	Unk	Unk	Unk	Unk	U						- Lie							Unk	Unk	Unk	Unk	NTC	NTC	NTC
П	EGH	EGFR	EGFR	EGFR	EGFR	= D				E I	FR	EG							:GFR	EGFR	EGER	EGER	EGER	EGER	EGER
	2	2	2	4	4					23	29	29		-			-			1.12	15	15			
										Unk	Unk	Unk				NTC	NTC	NTC							
						E				Actb	Actb	Actb				Actb	Actb	Actb	-	_					
	1	2	3	4	5					30	30	30				NTC	NTC	NTC	6	7	8	9	10	11	12
	Unk	Unk	Unk	Unk	Unk	U F				GADDH	GARDH	GARDH				GARDI	- GARDH	GAPD	Jnk	Unk	Unk	Unk	Unk	Unk	Unk
A	. Actb	Actb	Actb	Actb	Actb	A 1				30	30	30				GAPDI	GAPOI	Unrul	Actb	Actb	Actb	Actb	Actb	Actb	Actb
	15	15	15	17	17					Unk	Unk	Unk				NTC	NTC	NTC	24	26	26	26	28	28	28
E	GADD		GARDH	GARDH	GARDH	G				P53	P53	P53				P53	P53	P53	ADDH	GADDH	GADDH	GADDH	GADDH	GADDH	GADDH
1 *	15	15	15	17	17					30	30	30							24	26	26	26	28	28	28
	Unk	Unk	Unk	Unk	Unk	U				Unk	Unk	Unk				NTC	NTC	NTC	Jnk	Unk	Unk	Unk	Unk	Unk	Unk
C	P53	P53	P53	P53	P53	, н				EGFR	EGFR	EGFR				EGFR	EGFR	EGFR	P53	P53	P53	P53	P53	P53	P53
	15	15	15	17	17	-	-			30		30		-					24	26	26	26	28	28	28
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk		Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk
1 1	EGH	EGFR	EGFR	EGFR	EGFR	EGER	EGFR	EGER	EGER	EGFR	EGER	EGFR	D	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR
	15	Unk	Unk	1/	1/	Unk	19 Unk	19 Unk	19 Unk	NTC	NTC	NTC		Unk	Unk	Unk	24 Unk	24	24 Unk	20 Unk	20 Unk	26 Unk	28 NTC	28	28
F	Acth	Acth	Acth	Acth	Acth	Acth	Acth	Acth	Acth	Actb	Acth	Acth	E	Acth	Acth	Acth	Acth	Acth	Acth	Acth	Acth	Acth	Acth	Acth	Acth
1 ~	16	16	16	18	18	18	20	20	20				-	23	23	23	25	25	25	27	27	27			
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	NTC	NTC	NTC		Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	NTC	NTC	NTC
F	GAPD	H GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	F	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH
	16	16	16	18	18	18	20	20	20					23	23	23	25	25	25	27	27	27			
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	NTC	NTC	NTC		Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	NTC	NTC	NTC
G	P53	P53	P53	10	P53	10	P53	P53	P53	P53	P53	P53	G	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53
	Unk	10	Unk	Unk	Unk	Unk	Unk	Unk	Unk	NTC	NTC	NTC		23 Unk	23	23	Link	25 Unk	25	2/	2/	2/	NTC	NTC	NTC
Н	EGF	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	н	EGFR	EGFR	EGFR	EGFR	EGER	EGER	EGFR	EGFR	EGER	EGFR	EGFR	EGER
	16	16	16	18	18	18	20	20	20					23	23	23	25	25	25	27	27	27			
-																									

Without inter-run calibration!

Inter-run Calibrator

Gene maximization method

	1	2	3	4	5	6	7	8	9	10	11	12		1	2	2	3	4	5	6	7	8	3	9	10	11	12
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk		Unk	Un	ık U	Ink	Unk	Uni	c Uni	c Unk	Ur	ık	Unk	Unk	Unk	Unk
A	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Å	Actb	Ac	tb A	Actb	Actb	Act	 Act 	o Actb	Ac Ac	tb	Actb	Actb	Actb	Actb
L	1	1	1	3	3	3 Uak	5 Unic	5 Unic	5 Unic	7	7	7		B	8		8	10 Unk	10	10	12	1	2	12 Unk	5 Unk	5 Unk	5
в	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	в	GAPDH	I GAR	DH GA	APDH 0	GAPDH	GAP	OH GAP	OH GAPD	H GAR	PDH	GAPDH	GAPDH	GAPDH	GAPDH
	1	1	1	3	3	3	5 1		5	7	7	7	2	8			8	10	10	10	12	1	2	12	5	DIC	5
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	E K K	Unk	Unk	Unk	Unk		Unk	Un	ık U	Ink	Unk	Uni	c Uni	c Unk	: Ur	ık	Unk	Unk	। हत्व	Unk
С	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53		P53	PS	3 6	953	P53	P53	P53	P53	P	3	P53	P53	P53	P53
	1	1	1	3	3	3	5	5	5	7	1	2		3	4	5	6		7	8	9	10	11	l 1	2	5	5
l n	EGER	EGER	EGER	EGER	EGER	EGER	EGER	EGER	EGER	EGE	Unk	Unk	1	Unk	Unk	Unk	Unk	c	Unk	Unk	Unk				8	EGER	EGER
-	1	1	1	3	3	3	5	5	5	7 4	Actb	Actb		Actb	Actb	Actb	Actb		Actb	Actb	Actb					5	5
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	NTC	26	26		25 Unic	28	28	28		30 Unk	30 Unk	30					NTC	NTC
E	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actt F	GAPDI	H GAPDH	I G/	APDH	GAPDH	GAPDH	GAPD	не	SAPDH	GAPDH	GAPDH				C	Actb	Actb
	2	2	2	4	4	4	6	6	6	NTC	26	26		26	28	28	28		30	30	30				-	NTC	NTC
F	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPE	Unk	Unk	1	Unk	Unk	Unk	Unk	c	Unk	Unk	Unk				DH	GAPDH	GAPDH
· ·	2	2	2	4	4	4	6	6	6		P53	P53		P53	P53	P53	P53		P53	P53	P53						
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	NTC	26	26		25 Unk	28	28	28		30	JUDIC	30					NTC	NTC
G	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53 I) EGFR	EGFR	E	EGFR	EGFR	EGFR	EGFF	R	EGFR	EGFR	EGFR				3	P53	P53
L	Unk	Unk	2 Unk	4	4 Unk	4	6 Unk	6 Unk	6 Unk	NTO	26	26		26	28	28	28		30	30	30					NTC	NTC
ਮ	EGER	EGER	EGER	EGER	EGER	EGER	F	FR	EGER	EGE		- United		Unk	Un	U			Unit	Unk	Unk	NTC	NT	C N	TC R	EGER	EGER
	2	2	2	4	4	4			6	F		Ac		2	A	Actb	Actb		A	Actb	Actb	Actb	Act	tb Ac	tb 👘		
												- 110				29	29			5 Unk	5 Unk	NTC	NT	C N			
											G	H GAP	G		400	GAPDH	APD	н		TROV	GAPDH	GAPDH	GAP	DH GAI	PDH		
												2			29	29	29		5	KU	5						
	1	2	3	4	5	6	7	8	9	10	Junk	Une		Unk 🔶	Unk	Unk -	Unk	•	Unk	Unk	Unk	NTC	NT	C N	TC	11	12
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	7 P53	P53		P53	P53	P53	P53		P53	P53	P53	P53	P5.	3 P	53 k	Unk	Unk
A	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actt	Unk	Unk		Unk	Unk	Unk	Unk		Unk	Unk	Unk	NTC	NT	C N	rc b	Actb	Actb
-	14	14	14	16	16	16	18	18	18	5 }	EGFR	EGFR	E	GFR	EGFR	EGFR	EGFF	R	EGFR	EGFR	EGFR	EGFR	EGF	FR EG	FR	5	5
в	GARDH	GARDH	GARDH	GARDH	GARDH	GAPDH	GARDH	GARDH	GARDH	GAPE	27	27		27	29	29	29		5	5	5				DH	GARDH	GARDH
1	14	14	14	16	16	16	18	18	18	5		5	-	20	2	0	20	22	22	22	24	2	4	24	5		5
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	7 a	Unk		Unk	U	ık l	Jnk	Unk	Uni	c Un	c Unk	c Ui	nk	Unk	Unk	II 7 a 🗉	Unk
С	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	С	P53	P	53	P53	P53	P53	B P5	P53	P	53	P53	P53	P53	P53
	14 Uok	14	14 Unk	16	16	16	18	18	18	5 Unk	5 Unk	5 Unk		20	2		20 Ink	22	22	< 11a	24 C Unit	c 11	.4 nk	24	5 Unk	5 Unk	5 Uok
D	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	D	EGFR	EG	FR E	GFR	EGFR	EGF	R EGF	R EGF	R EG	FR	EGFR	EGFR	EGFR	EGFR
_	14	14	14	16	16	16	18	18	18	5	5	5	_	20	2	0	20	22	22	22	24	2	4	24	5	5	5
_	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	NTC	NTC	NTC	_	Unk	Ur	nk L	Jnk	Unk	Uni	c Uni	c Unk	c Ui	nk	Unk	NTC	NTC	NTC
E	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	Actb	E	Actb	Ac	tb A	Actb	Actb	Act	b Act	b Acti	b Ac	ctb	Actb	Actb	Actb	Actb
-	15 Unk	Ilak	15 Unk		1/	1/	19 Unk	19 Unk	19 Unk	NTC	NTC	NTC		21		l k l	Ink	23	23	< 11n	< 11nk	c III	s nk	25	NTC	NTC	NTC
F	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	GAPDH	F	GAPD	H GAI	DH GA	APDH (GAPDH	I GAPI	OH GAPI	OH GAPE	DH GAI	PDH	GAPDH	GAPDH	GAPDH	GAPDH
	15	15	15	17	17	17	19	19	19					21	2	1	21	23	23	23	25	2	5	25			
	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	Unk	NTC	NTC	NTC		Unk	Ur	ık L	Jnk	Unk	Uni	c Un	c Unk	c Ui	nk	Unk	NTC	NTC	NTC
G	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	P53	G	P53	P	53	P53	P53	P53	B P5	P53	P	53	P53	P53	P53	P53
	Unk	Unk	Unk		1/ Unk	1/ Unk	Unk	Unk	Unk	NTC	NTC	NTC		21		nk I	Ink	Unk	23	< 11a	c Unit	c 11	n kr	Unk	NTC	NTC	NTC
н	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	н	EGFR	EG	FR E	GFR	EGFR	EGF	R EGF	R EGF	R EG	FR	EGFR	EGFR	EGFR	EGFR
	15	15	15	17	17	17	19	19	19					21	2	1	21	23	23	23	25	2	5	25			

A new standard for qPCR

Clinical Chemistry 55:4 611–622 (2009) **Special Report**

The MIQE Guidelines: *M*inimum Information for Publication of Quantitative Real-Time PCR Experiments

Stephen A. Bustin,^{1*} Vladimir Benes,² Jeremy A. Garson,^{3,4} Jan Hellemans,⁵ Jim Huggett,⁶ Mikael Kubista,^{7,8} Reinhold Mueller,⁹ Tania Nolan,¹⁰ Michael W. Pfaffl,¹¹ Gregory L. Shipley,¹² Jo Vandesompele,⁵ and Carl T. Wittwer^{13,14}

The MIQE guidelines... "target the **reliability** of results to help ensure the **integrity** of the scientific literature, promote **consistency** between laboratories, and increase experimental **transparency**."

>4000 Citations

BIO RAD 63

Item to check	Importance	Item to check	Importance
Experimental design		qPCR oligonucleotides	
Definition of experimental and control groups	E	Primer sequences	E
Number within each group	E	RTPrimerDB identification number	D
Assay carried out by the core or investigator's laboratory?	D	Probe sequences	Dd
Acknowledgment of authors' contributions	D	Location and identity of any modifications	E
Sample		Manufacturer of oligonucleotides	D
Description	E	Purification method	D
Volume/mass of sample processed	D	qPCR protocol	
Microdissection or macrodissection	E	Complete reaction conditions	E
Processing procedure	E	Reaction volume and amount of cDNA/DNA	E
If frozen, how and how quickly?	E	Primer, (probe), Mg ²⁺ , and dNTP concentrations	E
If fixed, with what and how quickly?	E	Polymerase identity and concentration	E
Sample storage conditions and duration (especially for FFPE ^b samples)	E	Buffer/kit identity and manufacturer	E
Nucleic acid extraction		Exact chemical composition of the buffer	D
Procedure and/or instrumentation	E	Additives (SYBR Green I, DMSO, and so forth)	E
Name of kit and details of any modifications	E	Manufacturer of plates/tubes and catalog number	D
Source of additional reagents used	D	Complete thermocycling parameters	E
Details of DNase or RNase treatment	E	Reaction setup (manual/robotic)	D
Contamination assessment (DNA or RNA)	E	Manufacturer of qPCR instrument	E
Nucleic acid quantification	E	qPCR validation	
Instrument and method	E	Evidence of optimization (from gradients)	D
Purity (A260/A280)	D	Specificity (gel, sequence, melt, or digest)	E
Yield	D	For SYBR Green I, Cq of the NTC	E
RNA integrity: method/instrument	E	Calibration curves with slope and y intercept	E
RIN/RQI or C _q of 3' and 5' transcripts	E	PCR efficiency calculated from slope	E
Electrophoresis traces	D	Cls for PCR efficiency or SE	D
Inhibition testing (Cq dilutions, spike, or other)	E	r ² of calibration curve	E
Reverse transcription		Linear dynamic range	E
Complete reaction conditions	E	C _q variation at LOD	E
Amount of RNA and reaction volume	E	Cls throughout range	D
Priming oligonucleotide (if using GSP) and concentration	E	Evidence for LOD	E
Reverse transcriptase and concentration	E	If multiplex, efficiency and LOD of each assay	E
Temperature and time	E	Data analysis	
Manufacturer of reagents and catalogue numbers	D	qPCR analysis program (source, version)	E
Cqs with and without reverse transcription	Dc	Method of Cq determination	E
Storage conditions of cDNA	D	Outlier identification and disposition	E
qPCR target information		Results for NTCs	E
Gene symbol	E	Justification of number and choice of reference genes	E
Sequence accession number	E	Description of normalization method	E
Location of amplicon	D	Number and concordance of biological replicates	D
Amplicon length	E	Number and stage (reverse transcription or qPCR) of technical replicates	E
In silico specificity screen (BLAST, and so on)	E	Repeatability (intraassay variation)	E
Pseudogenes, retropseudogenes, or other homologs?	D	Reproducibility (interassay variation, CV)	D
Sequence alignment	D	Power analysis	D
Secondary structure analysis of amplicon	D	Statistical methods for results significance	E
Location of each primer by exon or intron (if applicable)	E	Software (source, version)	E
What splice variants are targeted?	E	$\rm C_q$ or raw data submission with RDML	D

Table 1. MIQE checklist for authors, reviewers, and editors.^a

^a All essential information (E) must be submitted with the manuscript, Desirable information (D) should be submitted if available. If primers are from RTPrimerDB, information on qPCR target, digonucleotides, protocols, and validation is available from that source.

PFPE, formalin-fixed, parafin-embedded: RN. RNA integrity number; ROI, RNA quality indicator; GSP, gene-specific priming: dNTP, deoxynucleoside triphosphate. - Assessing the absence of DNA with a no-reverse transcription assay is essential when first extracting RNA. Once the sample has been validated as DNA free, indusion of a no-reverse transcription control is desirable but no longer essential.

Disclosure of the probe sequence is highly desirable and strongly encouraged; however, because not all vendors of commercial predesigned assays provide this information, it cannot be an essential requirement. Use of such assays is discouraged.

Life Science Group

What is MIQE: It's a Checklist

- qPCR community driven guidelines for essential and desired information in literature;
 - Experimental Design
 - Sample Information
 - Nucleic Acid Extraction
 - Reverse Transcription
 - qPCR Target Information
 - qPCR Oligonucleotides
 - qPCR Protocol
 - qPCR Validation
 - Data Analysis

Temperature Gradient

dynamic thermal gradient

Test 12 sets of primer Life Science Group

• MIQE guideline

-Evidence of optimization

	Item to check	Importance	Item to check	Importar
Exp	perimental design		qPCR oligonucleotides	
	Definition of experimental and control groups	E	Primer sequences	E
	Number within each group	E	RTPrimerDB identification number	D
	Assay carried out by the core or investigator's laboratory?	D	Probe sequences	Dd
	Advnowledgment of authors' contributions	D	Location and identity of any modifications	E
Sa	npie		Manufacturer of oligonucleotides	D
	Description	E	Putification method	D
	Volume/mass of sample processed	D	qPCR protocol	
	Microdissection or macrodissection	E	Complete reaction conditions	E
	Processing procedure	E	Reaction volume and amount of cDNA/DNA	E
	If frozen, how and how quickly?	E	Primer, (probe), Mg ²⁺ , and dNTP concentrations	E
	If fixed, with what and how quickly?	E	Polymerase identity and concentration	E
	Sample storage conditions and duration (especially for \ensuremath{FFPE}^b samples)	E	Buffer/kit identity and manufacturer	E
Nu	delic acid extraction		Exact chemical composition of the buffer	D
	Procedure and/or Instrumentation	E	Additives (SYBR Green I, DMSO, and so forth)	E
	Name of kit and details of any modifications	E	Manufacturer of plates/tubes and catalog number	D
	Source of additional reagents used	D	Complete thermocycling parameters	E
	Details of DNase or RNase treatment	E	Reaction setup (manual/robotic)	D
	Contamination assessment (DNA or RNA)	E	Manufacturer of oPCR Instrument	E
	Nucleic acid quantification	E	qPCR validation	
	Instrument and method	E	Evidence of optimization (from gradients)	D
	Purity (4 ₂₅₉ /4 ₂₈₀)	D	Specificity (gel, sequence, melt, or digest)	E
	Yield	D	For SYBR Green I, Cq or the NTC	E
	RNA Integrity: method/instrument	E	Calibration curves with slope and y intercept	E
	RIN/RQI or Cq of 3' and 5' transcripts	E	PCR efficiency calculated from slope	E
	Electrophoresis traces	D	Cls for PCR efficiency or SE	D
R valida	tion			$\langle $
vidence	of optimization (from gradients)		D	
oecificity	(gel, sequence, melt, or digest)		E	
	Temperature and time	E	Data analysis	
	Manufacturer of reagents and catalogue numbers	D	qPCR analysis program (source, version)	E
	C ₄ s with and without reverse transcription	Dr	Method of C _a determination	E
	Storage conditions of cDNA	D	Outlier identification and disposition	E
qP	CR target information		Results for NTCs	E
	Gene symbol	E	Justification of number and choice of reference genes	E
	Sequence accession number	E	Description of normalization method	E
	Location of amplicon	D	Number and concordance of biological replicates	D
	Amplicon length	E	Number and stage (reverse transcription or qPCR) of technical replicates	E
	In silico specificity screen (BLAST, and so on)	E	Repeatability (Intraassay variation)	E
	Pseudogenes, retropseudogenes, or other homoloas?	D	Reproducibility (Interassay variation, CV)	D
	Sequence alignment	D	Power analysis	D
	Secondary structure analysis of amplicon	D	Statistical methods for results significance	-
	location of each primer by exon or intron (if applicable)		Software (source version)	61
	and a second printer by show or marker in separately		and the second sec	

Bio-Rad's CFX series Real-time PCR Family

CFX Connect

- Mid-price
- 96-well
- Fast block
- 2 targets

CFX96 Touch

- Premium
- 96-well
- Fast block
- 5 targets
- Stand-alone run

CFX384 Touch

- Premium
- 384-well
- 4 targets
- Stand-alone
- High throughput
- Stand-alone run

Life Science Group

CFX Connect™

- Optics shuttle transverses the plate at the completion of each data acquisition step
- Optics shuttle centered above each well resulting in identical light path and intensity for each well
- No need to sacrifice one channel to data collection of a passive reference dye

Patented Block Design

- Accuracy: +/- 0.2°C
- Uniformity: +/- 0.4°C within10 seconds

- Annealing temp is critical for reaction specificity and efficiency
- Save time and reagents optimizing annealing temp in one run
 - Program up to a 24°C gradient, back-to-front (back row is hotter)
 - 30-100°C range
 - "Dynamic Ramping" Wells hit set temperature point together, and then maintain the same dwell to eliminate time as a reaction variable

Gradient analysis

Optimal Annealing Range

Overcome non-specific amplification

Overcome non-specific amplification

Overcome non-specific amplification

 Serial dilutions run at 8 temps, ranging from 55°C to 68°C

.....

4

-

 Reactions at 62°C annealing have low Cts and highest reaction efficiency

Life Science Group

Use of Synthetic Templates

Synthetic templates allow for

- Sample independent validation of assay performance
- Comparison across plates (inter-run calibrators)
- Compare across labs

Nucleic Acids Research, 2009, 1–9 doi:10.1093/nar/gkp721

External oligonucleotide standards enable cross laboratory comparison and exchange of real-time quantitative PCR data

Joëlle Vermeulen¹, Filip Pattyn¹, Katleen De Preter¹, Liesbeth Vercruysse¹, Stefaan Derveaux¹, Pieter Mestdagh¹, Steve Lefever¹, Jan Hellemans^{1,2}, Frank Speleman¹ and Jo Vandesompele^{1,2,*}

RNA quality

- RNA quality analysis methodology
 - Analysis A260/A280 ratio and rRNA bands on agarose gel.
 - Automated microfluidic capillary electrophoresis system.
 - 3`:5` assay
 - SPUD assay (absence of PCR inhibitors)
 - NRT PCR assay (absence of DNA contamination)
- Analyze RNA quantity and quality
- UV absorbance
 - A260/A280=2.0,
 - A260: 0.15~1
 - A260/A230=2.5
 - Gel electrophoresis analysis
 28S rRNA, 18S rRNA

RNA quality

SPUD: detection presence of inhibitors

Nolan et al., Anal Biochem, 2006

Life Science Group

RNA Quality Control Assay

RNA Quality Assay – Two assays (RQ1 and RQ2) that target the same transcript, but at two different locations. A significantly higher presence of the shorter transcript (RQ1) indicates the RNA is degraded. A difference in C_q less than 3 between the two assays indicates acceptable RNA quality.

RNA degradation will not negatively affect results!

RNA is degraded and could be negatively affecting results – most likely need to redo sample extraction

Bio-Rad RT Kit

All Bio-Rad's iScript Kits:

- Use an MMLV enzyme with RNase H+ activity
- Come with an optimal blend of oligo dTs and random primers, (except the Select kit, which provides the primers in a separate tube)
- Include a potent RNAse inhibitor to protect the RNA from degradation prior to cDNA synthesis
- Were benchmarked against the top selling competitor products to demonstrate superior sensitivity and dynamic range

Review – Best Product for the Job

	iScript Reverse Transcription <mark>Supermix</mark> for RT- qPCR	iScript <mark>gDNA Clear</mark> cDNA Synthesis Kit	iScript <mark>Advanced</mark> cDNA Synthesis Kit for RT-qPCR	iScript <mark>Select</mark> cDNA Synthesis Kit	iScript cDNA Synthesis Kit
Features	Minimal reaction setup time	Effective gDNA removal before reverse transcription	Maximum RNA input for high cDNA yields	Flexible priming options	Reliable value solution
Cost	\$\$	\$\$\$	\$\$\$	\$	s
Total input RNA Range	1 µg - 1pg	1 µg - 1pg	7.5 µg - 100 fg	1 µg - 1pg	1 µg - 100 fg
Kit Format	1 tube	3 tubes	2 tubes	5 tubes	2 tubes
Kit Contents	 5x iScript RT Supermix No-RT control supermix 	 5x iScript RT Supermix No-RT control supermix DNase DNase buffer 	 iScript Reverse Transcriptase 5x iScript Advanced Reaction Mix 	 iScript Reverse Transcriptase 5x iScript Reaction Mix 3 priming options 	 iScript Reverse Transcriptase 5x iScript Reaction Mix
Time to Produce cDNA	26 min	36 min	21 min	40-90 min	26 min

qPCR Supermix

型號	敘述
Real-Time PCR 耗材	
八連排	
TCS-0803	Optical Flat 8-Cap Strips, 960 reactions
TLS-0851	Low-Profile 0.2 ml 8-Tube Strips without Caps, 960 reactions
TLS-0801	Low-Profile 0.2 ml 8-Tube Strips without Caps, 960 reactions
96或48孔盤	
MSB-1001	Microseal 'B' Adhesive Seals, Pkg of 100
MLL-9651	Multiplate White Low-Profile 96-Well Unskirted PCR Plates, Pkg of 25
MLL-9601	Multiplate Low-Profile 96-Well Unskirted PCR Plates, Pkg of 25
HSP-9955	Hard-Shell Thin-Wall 96-Well Skirted PCR Plates, Pkg of 50
MLL-4851	Multiplate White Low-Profile 48-Well Unskirted PCR Plates, Pkg of 50

反轉錄相關試劑

170-8890	iScriptTm cDNA Synthesis Kit, 25 reactions
170-8891	iScriptTm cDNA Synthesis Kit, 100 reactions
170-8896	iScriptTm Select cDNA Synthesis Kit, 25 reactions
170-8897	iScriptTm Select cDNA Synthesis Kit, 100 reactions
170-8892	iScriptTm One-Step RT-PCR Kit With SYBR® Green, 50 reactions
170-8893	iScriptTm One-Step RT-PCR Kit With SYBR® Green, 200 reactions
170-8894	iScriptTm One-Step RT-PCR Kit for Probes, 50 reactions
170-8895	iScriptTm One-Step RT-PCR Kit for Probes, 200 reactions

Real-Time PCR 混合液

iQTm Multiplex Powermix, 50 reactions		
iQTm Multiplex Powermix, 200 reactions		
iQTm Supermix, 100 reactions		
iQTm Supermix, 500 reactions		
iQTm Supermix, 1,000 reactions		
iQTm SYBR® Green Supermix, 100 reactions		
iQTm SYBR® Green Supermix, 500 reactions		
iQTm SYBR® Green Supermix, 1,000 reactions		
iQTm SYBR® Green Supermix, 2,000 reactions		
SsoFast [™] EvaGreen® Supermix, 200 reactions		
SsoFast [™] EvaGreen® Supermix, 500 reactions		
SsoFast [™] EvaGreen® Supermix, 1,000 reactions		
SsoFast [™] EvaGreen® Supermix, 2,000 reactions		
SsoFast Probes Supermix, 200 reactions		
SsoFast Probes Supermix, 500 reactions		
SsoFast Probes Supermix, 1,000 reactions		

Industry-leading CFX Manager Software

Data Collecting

and Analysis

BIO RAD

Effective

Wizard

Reduce Anxiety!

Powerful

Function modules

Life Science Group

- Absolute quantification
- Relative quantification (Gene expression analysis)
- Melt curve analysis
- Genotyping
- QC
- Run information
- Qualification Plate Run

CFX Manager software

- Sample group
- PCR efficiency correction
- Normalization with multiple reference genes
- Gene Study (combination of multiple plates)
- Screening best reference genes by M value
- Inter-run-calibration
- Comply with MIQE guideline
 - RDML export RDML
- Visualize your data
 - Bar chart
 - Cluster gram
 - Scatter plot
 - Volcano plot
 - Heat Map
 - Results table

Challenge of q-PCR

96

What about an new method - Digital PCR

PCR reaction that is partitioned.

Life Science Group

Many thousands of discrete measurements

97

dPCR Principle

The sample is partitioned into 20,000 droplets, with target and background DNA randomly distributed among the droplets.

After PCR amplification, each droplet provides a fluorescent positive or negative signal indicating the target DNA was present or not present after partitioning. Each droplet provides an independent digital measurement.

"X" target copies

Positive and negative droplets are counted for the sample and the software calculates the concentration of target DNA as copies per microliter.

More tolerant to PCR inhibitors

Less sensitive to PCR efficiency

ddPCR improves precision, sensitivity and reproducibility BIO-RAD

Life Science Group

End point (0's or 1's)

No standard curve

Workflow of Droplet Digital PCR

- Readout: copies/µl
- Dynamic range: 1–100,000 copies/well
 - (~330 ng human genomic DNA)

ddPCR assays are more easy to design and validate

Temperature Gradient: EvaGreen

- Primer dimers can be visualized with EvaGreen chemistry
- Primer dimer frequency increases at lower annealing temperature and are visible in NTCs

Applications

mRNA, small RNA, IncRNA

102

E-mail: charlene_lu@bio-rad.com Phone: 0987-792-623

Life Science Group