Quality Assurance in Gamma Camera

Lin Wen-Chun Department of Nuclear Medicine, Kaohsiung Veterans General Hospital

Factors affecting image formation

- Distribution of radiopharmaceutical
- Collimator selection and sensitivity • Energy resolution
- Uniformity
- Spatial resolution
- Count rate performance
- Center of rotation misalignment Patient motion
- Attenuation

Quality Control Practices

- Daily QC
- Energy Peaking
- Uniformity: Extrinsic or Intrinsic flood - Sensitivity Measurement
- Weekly QC: with PLES or four-quadrant bar phantom.
- Spatial Resolution, Linearity : Extrinsic or Intrinsic Pixel size
- Monthly QC
- High count Uniformity calibration (200 million count) - C.O.R. (center of rotation)

ICANL (I

Daily QC

- Energy Peaking
- Uniformity: Extrinsic or Intrinsic flood
- Sensitivity Measurement

Daily QC

- Peak: daily for $^{\rm 57}{\rm Co},\,^{\rm 99m}{\rm Tc},\,$ & other isotopes to be used that day.
- Uniformity: Flood images of 15-30 million counts each day of use, before imaging begins.
- Extrinsic flood image is preferred and tests heavily used collimators.
- Intrinsic flood image to test detector only, especially at the periphery of the FOV.

Energy Peaking Tc99m 2000 126 110

Uniformity

Uniformity Correction is a Calibration
--

- Intrinsic Calibration requires
 Precise point source background and scatter free
 Correct count rate
- Extrinsic Calibration
- Planar flood source
- Required for each collimator
- Includes intrinsic calibration

Date	903	\$04	905	906	907	- 910		912	.913			918	. 919		921	. 924	925	926	- 927	
D1 Int.(%)	2.04	2.10	1.90	2.30	2.11	2.44	2.92	2.27	2.24	2.02	2.68	3.39	2.28	2.15	1.88	2.02	2.22	2.35	2.13	1.84
D2 Int.(%)	1.93	2.17	2.24	2.05	1.72	2.01	2.18	1.86	2.24	2.11	1.97	3,16	2.10	2.01	2.46	1.83	1.95	2.28	2.06	2,37
Normal(%)	3.74	3.74	3.74	3.74	3.74	3.74	3.74	3.74	3.74	3.74	3.74	174	3.74	3.74	3.74	3.74	3.74	3.74	3.74	3.74
D1 Diff.(%)			1.39	1.39	1.60		1.59	1.53	1.49				1.59		1.32	1.18	1.32	1.38	1.34	
D2 Diff.(%)	1.42	1.38	1.37	1.37	1.40	1.35	1.63	1.18	1.23		1.41	1.57	1.42	1.33	1.40	1.16	1,40	1.51	1.22	1.49
	0.24	2.74	2.74	2.74	2.74	2,74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2,74	2,74	2.74	2.74	2.74	2.74	2.74
Date	ymbi 903	a S#	905	·管山 906	ntrins 907	ic Un 910	iform 911	912	FOV 913	月統 914	計表 917	(201 918	2 09) 919	920	921	924	925	926	927	928
Date	ymbi 903	a Sfi 904	905	皆 II 906	ntrins 907	ic Un 910	iform 911	912	FOV 913	月秋 914	計表 917	(201 918	2 09) 919	920	921	924	925	926	927	928
Date D1 Int.(%)	ymbi 903	a Sfi	905 1.61	音 10 906	ntrins 907	910 2.03	10m	912 1.99	POV 913 2.11	月秋 914 1.71	計表 917 2.43	(201 918 2.03	209) 919 2.09	920 1.97	921	924	925	926	927	928 1.77
Date D1 Int.(%) D2 Int.(%)	ymbi 903 1.58 1.64	a S# 904 1.51 1.73	905 1.61 1.60	906 1.65 1.88	907 1.89 1.51	910 2.03 1.75	10rm 911 1.90 1.63	912 912 1.99 1.57	POV 913 2.11 1.98	月秋 914 1.71 1.74	計表 917 2.43 1.69	(201 918 2.03 2.76	209) 919 2.09 1.58	920 1.97 1.68	921 1.55 1.09	924 1.73 1.77	925 1.70 1.64	926 1.71 1.94	927 1.50 1.8	928 1.77 2.09
Date D1 Int.(%) D2 Int.(%) Normal(%)	ymbi 903 1.58 1.64	a Sfi 904 1.51 1.73 2.94	905 1.61 1.60 2.94	906 1.65 1.88 2.94	907 1.89 1.51 2.94	2.03 2.03 1.75 2.94	1.63	1.99 1.99 1.57 2.94	POV 913 2.11 1.98 2.94	月就 914 1.71 1.74 2.94	計表 917 2.43 1.69 2.94	(201 918 2.03 2.76 2.94	209) 919 2.09 1.58 2.94	920 1.97 1.68 2.94	921 1.55 1.09 2.94	924 1.73 1.77 2.94	925 1.70 1.64 2.94	926 1.71 1.94 2.94	927 1.50 1.8 2.94	928 1.77 2.09 2.94
Date D1 Int.(%) D2 Int.(%) D1 Diff.(%) D1 Diff.(%)	ymbs 903 1.58 1.64 1.36 1.40	a SB 904 1.51 1.73 2.94 1.20	905 1.61 1.60 2.94	906 1.65 1.88 2.94 1.10	151 189 151 2.94	e Un 910 2.03 1.75 2.94 1.28	10m 911 1.90 1.63 2.94 1.29	ity C 912 1.99 1.57 2.94	POV 913 2.11 1.98 2.94 1.20	月統 914 1.71 1.74 2.94 1.17	917 2.43 1.69 2.94 1.29 1.25	(201 918 2.03 2.76 2.94 1.65	209) 919 2.09 1.58 2.94 1.20	920 1.97 1.68 1.25 1.12	921 1.55 1.09 2.94 2.18	924 1.73 1.77 2.94 1.08	925 1.70 1.64 1.32 1.36	926 1.71 1.94 1.13 1.21	927 1.50 1.8 2.94 0.08	928 1.77 2.09 2.94 1.09
Date D1 Int.(%) D2 Int.(%) D1 D1 Int.(%) D1 Diff.(%) D2 Diff.(%) D2 Diff.(%)	ymbi 903 1.58 1.64 1.26 1.40 2.54	a Sfi 904 1.51 1.73 2.94 1.20 1.18	905 1.61 1.60 2.94 1.10 1.37	100 1.65 1.88 2.94 1.19 1.19	151 1.89 1.51 2.94 1.01 1.16	ic Un 910 2.03 1.75 2.94 1.28 1.09	10m 911 1.90 1.63 2.94 1.17 2.54	ity C 912 1.99 1.57 2.94 1.19 1.18	POV 913 2.11 1.98 2.94 1.20 1.22	月就 914 1.71 1.74 2.94 1.17 1.14	917 2.43 1.69 2.94 1.25 1.25	(201 918 2.03 2.76 2.94 1.65 1.50	209) 919 2.09 1.58 2.94 1.20 1.03 2.54	920 1.97 1.68 2.94 1.75 1.12	921 1.55 1.09 2.94 1.38 1.38	924 1.73 1.77 2.94 1.05 1.15	925 1.70 1.64 1.30 1.36 2.94	926 1.71 1.94 1.13 1.21 2.54	927 1.50 1.8 2.94 1.12 2.54	928 1.77 2.09 2.94 1.09 1.29

	Symbia S 毎日晶管 Intrinsic Uniformity UFOV 月統計圖 (201209)
# 200 1.00 0.00	+-D) larce +-D larce
	Symbia S 你日品等 Intrinsic Uniformity UPOV 月終計編 (201209)
4.00 3.00	
₽ 2.00 - 1.00 -	- D2 Daff.(9
and the second sec	

Spatial resolution

Spatial Resolution

- Providing images sharpness or detail.Factors affecting spatial resolution include:
- collimator resolution (the main factor in nuclear medicine). System sensitivity requires certain diameter of the collimator holes etc.
- intrinsic resolution (due to the statistical variation which is photon energy dependent).

Methods for Evaluating Spatial Resolution

- Organ phantom measurement (qualitative) such as brain phantom.
- Bar phantom measurement (quantitative). There are a number of phantoms: four quadrant bar phantom, parallel-line phantom, orthogonal hole phantom.

Acquisition Method

- Resolution: Intrinsic (preferred) or Extrinsic image of 5-15 million counts of four-quadrant bar phantom. matrix: 256x256.
- Linearity: Intrinsic (preferred) or Extrinsic images of 5-15 million counts with PLES or four-quadrant bar phantom. matrix: 256x256.

E	Extrinsic I	Resolution	
3.5 mm bars	3.0 mm bars		(STERNAR STREET)
2.0 mm bars	2.5 mm bars	The second second second second	L

Г

Monthly QC

- High count calibration floods (200 million count) - Center Of Rotation

Monthly QC

- High count calibration floods (200 million count)
- C.O.R. (center of rotation): with collimator, use 3 or 5 point source

Center of Rotation

COR Acquisition is a Calibration

- Used to correct patient images
- Extrinsic calibration for both 180^o and 90^o detector separations
- Must follow manufacturer recommendations regarding number and placement of sources
- Sources must have sufficient activityCompleted monthly

С	OR 180 ⁰		
(inors	Detectori	Detector 2	
vitan 🛛	0.18 mm	1.12 mm	······································
Aliz	1.56 mm	2.90 mm	
An -	-111mm	0.27 mm	+ i0i12
lange	2.57 mm	2.53 mm	0.12014018219210001100118211300122012001280128011
(Emors	Ditectors	Detector 2	
ltan 🛛	-1.77mm	0.17 mm	
da:	0.00 mm	1.27 mm	
A n	-138 mm	0.22 mm	************************
age .	1.39 mm	1.05 mm	
Atan Y Maximum	-151mm	1	+0e1 0e2

С	OR 90)
Errors	Detector1	Detector
Mean	-0.04 mm	1.15 mm
Max	1.74 mm	2.74 mm
Min	-157 mm	-0.49 mm
Range	3.31 mm	3.23 mm
YEmors	Detector1	Detector 2
Mean	-0.69 mm	0.69 mm
Max	0.09 mm	1.12 mm
Mh	-1.44 mm	0.35 mm
8ange	1.54 mm	0.77 mm
Mean Y difference	-1.39 mm	

Quarterly QC -Deluxe Jaszczak Phantom ar 18 1. Used for evaluation of overall performance of tomographic Used for evaluation of occurs performance in a significant of the significan

(C). section containing empty (cold) spheres ranging from 9.5 to 31.8 mm in diameter for evaluation of cold-sphere contrast (D). section containing solid (cold) rods ranging from 3.2 to 11.1 mm in diameter for evaluation of reconstructed spatial resolution (E). Images in C-E have been analytically corrected for attenuation.

0	0		 Quarterly acquire SPECT phantom studies with 2-3 time counts obtained clinically.
			 Reconstruct at highest resolution fliter. Look for bullseye artifacts. If present, new
	.0		intrinsic correction floor needed. Look for consist
	\odot	0	 transaxial resolution. If resolution loss, acquire new COR.

Conclusions

- Standard QC procedures for gamma cameras required in accreditation programs.
- SPECT uniformity correction and COR are camera calibrations.
- SPECT demands strict QC program.