

3

TABLE 12.1.	ISOTOPES FOR	POSITRON	EMISSION 7	COMOGRAPHY
-------------	--------------	----------	------------	------------

Isotope	t ₁₂	Positron end point (MeV)	Effective range FWHM [#] (mm)	Means of production
C-11	20.3 min	0.97	2.06	Cyclotron
N-13	10.0 min	1.19	3°	Cyclotron
O-15	124.0 sec	1.7	4.5^{c}	Cyclotron
F-18	110.0 min	0.635	1.4°	Cyclotron
Rb-82"	75.0 sec	3.15	13.8	Sr-82 generator
Ga-68	68.3 min	1.88	5.4	Ge-68 generator
Br-75	1.6 hr	1.7, 1.1, 0.65		Cyclotron

"FWHM = full width at half-maximum.

^{*b*}The lower of the two radioactive isomers of Rb-82. ^{*c*}Interpolated values.

4

• cyclotron

Positron-Emitting Radiochemicals

Physiologic alteration

Tracer(s)

Increased glucose utilization Increased amino acid transport/ protein synthesis Increased DNA synthesis

Tumor hypoxia Increased estrogen receptor expression Increased blood flow Increased antigen or receptor density

Increased retention of chemotherapeutic agents FDG, ¹¹C-glucose ¹¹C-methionine, ¹¹C-ACHC, ¹¹C-tyrosine ¹¹C-thymidine, ¹⁸F-fluorodeoxyuridine ¹⁸F-fluoromisonidazole ¹⁸F-fluoromisonidazole ¹⁸F- β -estradiol ¹⁵O-H₂O, ⁶²Cu-PTSM ¹⁸F-labeled anti-tumor monoclonal antibodies 5-¹⁸F-fluorouracil, ¹¹C-daunorubicin

6

Application

Table 1.3 Potential radiopharmaceuticals for clinical PET

Radionharmaceutical

nau opinar na carreat	. In burner and the
[¹¹ C]Flumazenil	Localization of epileptic foci
[¹⁸ F]Fluoromisonidazole	Hypoxic tumour cells, ischaemically compromised myocardium
[¹¹ C]Acetate	Cardiac oxidative metabolism
[¹¹ C]Palmitate	Cardiac fatty acid metabolism
[¹³ N]Glutamate	Tumour metabolism
[¹⁸ F]Fluorodopa	Dopamine synthesis
[¹¹ C]Aminoisobutyric acid (AIB)	Tumour amino acid uptake
[¹¹ C]Aminocyclopentanecarboxylic acid (ACPC)	Tumour amino acid uptake
[¹⁸ F]Uracil (FU)	Evaluation of response to chemotherapy
[¹¹ C]Thymidine	Tumour cellular proliferation rate
[⁶⁸ Ga]EDTA	Blood-brain barrier permeability
[⁶² Cu]PTSM	Blood flow
[¹¹ C]Tvrosine	Tumour metabolism

8

• Three compartment model

 Physiologic FDG uptake all viable tissues

Pathologic FDG uptake

benign or malignant tumor activated PMNs or macrophages

Standard uptake value (SUV)

Decay-corrected dose / cm³ tumor SUV=

Injected dose / Patient Wt (gm)

spatial resolution = 0.5 cm partial volume effect in <1 cm lesion Anatomic correlation Attenuation correction

12

Precautions NPO >4 hours, blood sugar <180 mg/dl pregnancy (x) breast feeding 6 hours later

 Early detection is the most effective strategy for reducing mortality from breast cancer

 anatomic imaging mammography, sonography, MRI

functional imaging ?
 FDG PET or PET/CT

physiologic FDG uptake

tissue density hormone status lactating

pathologic FDG uptake

benign or malignant tumor inflammation or infection

16

● SUV ≥2.5

False negative

- 1. cancer <1 cm
- 2. low-grade less-aggressive cancer carcinoma in situ. lobular carcinoma. tubular carcinoma
- 3. diffuse growth pattern

False positive

- 1. acute or chronic infection
- 2. post operative healing process, granulation tissue
- 3. post radiation inflammation
- 4. fibrocystic change, atypical ductal hyperplasia, ductal ectasia
- 5. fibroadenoma, intraductal papilloma
- 6. phyllodes tumor

Invasive ductal carcinoma in a 42-year-old woman. **(a)** US image shows a lobular hypoechoic mass (arrows) in the right breast. The mass was diagnosed as carcinoma on the basis of pathologic analysis of a specimen from US-guided biopsy. PET/CT was performed for pretreatment staging **(b)** Axial PET/CT image shows markedly increased FDG uptake (maximum SUV, 8.9) indicative of hypermetabolism in the lesion (arrow).

Invasive lobular carcinoma in a 50-year-old woman. **(a)** US image shows an irregular hypoechoic mass (arrows) in the left breast. After a US-guided biopsy, the mass was diagnosed as carcinoma. PET/CT was performed for pretreatment staging. **(b)** Axial PET/CT image shows slight FDG uptake (maximum SUV, 2.0) in the mass (arrow), a finding characteristic of invasive lobular carcinoma; an invasive ductal carcinoma would have shown more marked uptake.

a.

b.

Figure 14. False-negative finding at PET/CT during staging of ovarian cancer in a 56-year-old woman. (a) Mammogram of the left breast, obtained before the administration of hormonal therapy, shows a cluster of pleomorphic and amorphous microcalcifications (arrows). The pathologic diagnosis after a wire localization biopsy was ductal carcinoma in situ (b) Axial PET/CT image shows no corresponding area of increased FDG uptake.

a.

b.

Figure 15. False-negative finding at PET/CT during restaging of ovarian cancer in a 63-year-old woman. (a) Image obtained at US, which was performed for evaluation of a palpable lesion in the left breast, shows an approximately 0.8-cm-diameter irregular mass (arrows) in the right breast. The diagnosis of the right breast lesion, based on pathologic analysis after a US-guided biopsy, was tubular carcinoma. (b) Axial PET/CT image shows no hypermetabolic lesion.

a.

b.

Figure 12. False-positive finding at PET/CT during preoperative staging of rectal cancer in a 47-yearold woman. (a) Axial PET/CT image shows a hypermetabolic (maximum SUV, 5.7) lesion (arrow) in the right breast, a finding that was believed to represent breast cancer. (b) Subsequent US image shows an oval circumscribed mass (arrows) in the right subareolar area. A US-guided biopsy was performed, and the mass was diagnosed on the basis of pathologic analysis as a chronic abscess

c.

Figure 2. Abscess in a 58-year-old woman with a palpable breast lesion and a previously detected lung mass. (a) Axial CT attenuation-corrected PET image shows a focus of intense FDG uptake (maximum SUV, 11.5) (arrow) in the right anterior thorax. Exact localization of the area of increased uptake (confined to the breast or extending to the chest wall) was difficult on the basis of PET images. (b) Axial CT image shows an isoattenuating lesion (arrow) in the chest wall beneath the breast, (c) Axial PET/CT image shows areas of increased FDG uptake indicative of hypermetabolic lesions in the chest wall (arrow) and lung (arrowhead). (d) US image shows an ill-defined hypoechoic lesion (arrows) in the chest wall. At pathologic analysis, the lesion was diagnosed as a tuberculous abscess. Inflammation surrounding the abscess led to the increased FDG uptake.

Figure 13. False-positive finding at PET/CT during restaging and follow-up after breast-conserving surgery and radiation therapy for invasive ductal carcinoma in a 53-year-old woman. (a) Mammogram shows an area of postoperative and radiation-induced change (arrow) in the outer region of the left breast. (b) Axial PET/CT image shows a focus of FDG uptake (maximum SUV, 3.1) (arrow) in the upper outer region of the left breast. A US-guided biopsy was performed, and pathologic analysis showed no evidence of a recurrence.

a.

a.

b.

Figure 18. Fibroadenoma in the left breast of a 43-year-old woman. (a) US image obtained for routine monitoring of a previously diagnosed fibroadenoma shows a well-circumscribed oval mass (arrow).
(b) Axial PET/CT image shows no significant uptake (maximum SUV, 1.6) in the mass (arrow).

a.

b.

Figure 19. False-positive finding at PET/CT in a 47-year-old woman. (a) Axial PET/CT image shows a hypermetabolic (maximum SUV, 3.5) lesion (arrowhead) in the right breast, a finding suggestive of breast cancer. (b) US image shows an irregular mass (arrows) in the upper inner area of the right breast. The diagnosis, based on pathologic analysis of an excisional biopsy specimen, was fibrocystic change with florid ductal hyperplasia, columnar cell hyperplasia, and apocrine metaplasia.

26

• Cancer types vs FDG uptake

Glucose Metabolism of Breast Cancer Assessed by 18F FDG PET Histologic and Immunohistochemical Tissue Analysis J Nucl Med 2001; 42:9–16

• Cancer types vs FDG uptake

Glucose Metabolism of Breast Cancer Assessed by 18F FDG PET Histologic and Immunohistochemical Tissue Analysis J Nucl Med 2001; 42:9–16

28

Cancer types vs FDG uptake

Table 2. Showing significant factors predicting FN results

Factors	Category	n	FN	ТР	<i>p</i> -value
Tumor size	Tumor size	73	12.14 ± 13.26	20.94 ± 11.80	0.003
Tumor grade	High		07	22	
	Moderate	85	16	13	0.001
	Low		13	02	
	In situ		08	04	

n – Number of patients.

Table 3.	Showing	multivariate	logistic	regression	analysis
	0			0	

Factors	Category	Regression coefficient (β)	Odds ratio (OR)	95% CI of OR	<i>p</i> -value
Tumor size	>10 mm ^a				
	≤10 mm	2.09	8.09	(3.38, 31.52)	0.001
Tumor grade	High ^a				
	Low	2.82	16.76	(2.87, 57.65)	0.002
	Moderate	1.82	6.26	(1.74, 22.18)	0.005
	Constant	-0.092			0.874

Clinicopathologic factors associated with false negative FDG–PET in primary breast Breast Cancer Research and Treatment (2006) 98: 267–274

29

Cancer types vs FDG uptake

Clinicopathologic factors associated with false negative FDG–PET in primary breast Breast Cancer Research and Treatment (2006) 98: 267–274

30

• Dual-time-point

lesion detectability

 TABLE 1

 SUVmax Measurements and Changes over Time in Normal Breast, Invasive Cancer, Noninvasive Cancer, and T/B Ratios

Histopathology	SUVmax1	SUVmax2	Δ %SUVmax	∆% in ratio 1 and ratio 2 (T/B ratio)
Group A ($n = 82$) Group B ($n = 24$)	$\begin{array}{c} 3.9\pm3.7\\ 2.0\pm0.6\end{array}$	$\begin{array}{c} 4.3\pm4.0\\ 2.1\pm0.6\end{array}$	8.3 ± 11.5 3.4 ± 13.0	22.0 ± 26.8 15.7 ± 18.6
Group C ($n = 120$)	1.2 ± 0.3	1.1 ± 0.2	-10.0 ± 10.8	

Group A = invasive cancer; group B = noninvasive cancer; group C = contralateral breast; ratio 1 = T/B ratios of SUVmax at first time point; ratio 2 = T/B ratios of SUVmax at second time point; $\Delta\%$ = percent change. Data are presented as mean ± SD.

• Dual-time-point

lesion detectability

TABLE 2

SUVmax Measurements and Changes over Time in Invasive Cancers According to Subtypes

Group A (n = 82)	SUVmax1	SUVmax2	∆% S <mark>U</mark> Vmax	
Invasive ductal $(n = 66)$	4.3 ± 3.9*	4.7 ± 4.3*	8.1 ± 10.6*	
Invasive lobular $(n = 7)$	2.7 ± 1.8*	3.1 ± 2.3*	10.5 ± 14.0*	
Invasive mixed $(n = 7)$	2.0 ± 0.9*	2.2 ± 1.1*	9.3 ± 14.6*	
Medullary $(n = 1)$	7.2	8.6	19.4	
Mucinous $(n = 1)$	1.0	1.0	0	

*Data are presented as mean \pm SD. Group A = invasive cancers; $\Delta \%$ = percent change.

Dual Time Point ¹⁸F-FDG PET Imaging Detects Breast Cancer with High Sensitivity and Correlates Well with Histologic Subtypes J Nucl Med 2006; 47:1440–1446

32

• Dual-time-point

lesion detectability

 TABLE 3

 SUVmax Measurements and Changes over Time According to Tumor Size in Invasive Cancers with Increase in T/B Ratios

Group A (n = 82)	SUVmax1	SUVmax2	∆%SUVmax	$\Delta\%$ in ratio 1 and ratio 2 (T/B ratio)
Tumors >10 mm ($n = 57$)	4.8 ± 4.1	5.3 ± 4.4	8.6 ± 12.2	$\begin{array}{r} 23.1 \pm 28.5 \\ 18.8 \pm 23.5 \end{array}$
Tumors 4–10 mm ($n = 25$)	1.9 ± 0.8	2.0 ± 0.7	6.5 ± 9.9	

Group A = invasive cancer; ratio 1 = T/B ratios of SUVmax at first time point; ratio 2 = T/B ratios of SUVmax at second time point; Δ % = percent change.

Data are presented as mean \pm SD.

	Invasive cancer >10 mm	Invasive cancer 4-10 mm	Noninvasive cancer
Single-time	91%	57%	25%
Dual-time	90%	83%	77%

Dual Time Point ¹⁸F-FDG PET Imaging Detects Breast Cancer with High Sensitivity and Correlates Well with Histologic Subtypes J Nucl Med 2006; 47:1440–1446

Dua

ma

 TABLE 1

 Single- and Dual-Time-Point Imaging SUVs in Patients with Malignant Lesions

		Average SUV at time:		% Change in	Histopathologic	Tumor	
	Sample	1	2	average SUV	findings	grade	Size (cm)
Littere meters	1	1.2	1.4	16.7	IDC	Low	0.2
I-fime-point	2	1.5	1.7	13.3	IDC	High	1.5
	3	0.7	0.7	0	IDC + ILC	Moderate	3.5
	4	0.6	0.7	16.7	IDC	Not known	1.0
nnant lesion	5	1.1	0.9	-18.2	IDC	Moderate	0.2
ghant icsion	6	3.0	3.3	10.0	IDC	High	2.0
	7	2.1	2.3	9.5	IDC	Moderate	2.4
	8	2.1	2.2	4.8	IDC + ILC	Low	4.0
	9	1.4	1.6	14.3	IDC	Moderate	0.5
	10	1.9	2.3	21.1	IDC	High	Not known
	11	1.8	1.9	5.6	ILC + IDC	Moderate	1.5
	12	0.8	0.9	12.5	IDC	Low	Not known
	13	7.4	9.1	23.0	IDC	High	Not known
	14	2.3	2.5	8.7	IDC	Moderate	2.9
	15	1.8	2.0	11.1	IDC	Moderate	1.9
	16	0,9	0.9	0	IDC	Moderate	1.6
	17	2.0	2.3	15.0	IDC	Low	3.5
	18	2.7	3.5	29.6	IDC + ILC	High	2.4
	19	0.6	0.8	33.3	IDC	Low	1.6
	20	11.7	15.7	34.2	IDC	High	2.6
	21	0.7	0.8	14.3	IDC	Low	1.4
	22	29	3.2	10.3	IDC	Moderate	21
	23	15.3	20.0	30.7	IDC	High	28
	24	57	5.9	3.5	IDC	High	19
	25	0.7	0.7	0.0		Low	0.3
	26	6.0	6.9	15.0	Medullary carcinoma	High	1.8
	27	5.2	5.8	11.5	IDC	Moderate	2.5
	28	2.2	2.4	Nadva ne m	inc cular imaging	High	2.0
	20	1.5	1.7	12.2	IDC	Moderate	1.2
	20	0.4	0.4	0	IDC	Moderate	0.4
	30	0.4	0.4	40	IDC	High	0.4
	22	2.5	2.0	4.0	IDC	Low	Not known
	32	17	10	11.0		Low	Not known
	33	1.6	1.9	11.0		LOW	NOL KHOWI
	34	1.4	1.7	21.4	IDC IDC	Moderate	0.9
	35	0.8	1.0	20	IDO	High	NOT KNOWN
	30	2.1	3.0	33.3	IDO	Moderate	1.0
	37	0.2	1.1	24.2	100	woderate	4.0
	38	3.0	3.2	6.7	IDC	moderate	Not known
	39	3.3	3.0	-9.1	Adenocarcinoma	NOT KNOWN	Not known
	Mean	2.88	3.38	12.7			
	SU	3.04	3.98	11.4			

IDC = invasive ductal carcinoma; ILC = invasive lobular carcinoma.

Potential of Dual-Time-Point Imaging to Improve Breast Cancer Diagnosis with 18F-FDG PET J Nucl Med 2005: 46:1819–1824

34

• Dual-time-point

benign lesion

TABLE 2 Single- and Dual-Time-Point Imaging SUVs in Patients with Postbiopsy Inflammation						
Average SUV at time:			COLUMN COLUMN			
Sample	1	2	% Change in average SUV	Histopathologic findings		
1	1.7	1.4	-0.176	No tumor, Bx Rx +		
2	1.1	0.8	-0.273	Benign, Bx Rx +		
3	1.5	1.9	0.267	No tumor, Bx Rx +, Ch Inf		
4	1.3	1.1	-0.154	No tumor, Bx Rx +		
5	1.0	0.7	-0.300	No tumor		
6	1.3	1.2	-0.077	No tumor, Bx Rx +		
7	1.0	0.8	-0.200	No tumor, Bx Rx +		
8	1.0	1.1	0.100	Bx Rx +, proliferative fibroblasts		
9	1.6	1.6	0	No tumor, Bx Rx +		
10	1.5	1.3	-0.133	No tumor, Bx Rx +		
11	1.0	0.8	-0.200	No tumor, Bx Rx +		
12	0.8	0.6	-0.250	No tumor, Bx Rx +		
13	1.4	1.3	-0.071	No tumor, Bx Rx +		
14	1.5	1.4	-0.067	Benign, Bx Rx +		
15	2.0	1.9	-0.050	No tumor, Bx Rx +		
16	1.5	1.5	0	No tumor, Bx Rx +		
17	1.5	1.7	0.133	Bx Rx, foreign-body giant-cell reaction		
18	0.5	0.3	-0.400	No tumor, Bx Rx +		
Mean	1.29	1.19	-0.103			
SD	0.36	0.45	0.166			

Bx Rx = biopsy reaction; Ch Inf = chronic inflammation.

Potential of Dual-Time-Point Imaging to Improve Breast Cancer Diagnosis with 18F-FDG PET J Nucl Med 2005; 46:1819–1824

39

• Hayato Kaidaa et al:

Improved breast cancer detection of **prone** breast FDG-PET in 118 patients

total 114 cancer

94 by supine PET, additional 10 by prone PET

Results Sensitivity, specificity, positive predictive value, NPV, and accuracy of whole-body PET images were 83, 50, 97, 17, and 80%, and of prone breast PET images they were 95, 50, 96, 43, and 93%. Ten of 114 breast cancerous lesions (8.8%) were detected on prone breast PET images alone.

40

Table 2 The characteristic performance of 10 cases detected by prone breast image alone

	Clinical staging	US (mm)	SUV max	Pathological staging	Histopathological findings
1	TisN0M0	18.6 × 10.0	1.3	T1N0M0	Papilotubular carcinoma
2	T1N0M0	9.6 × 6.0	1.4	T1N0M0	Papilotubular carcinoma
3	TisN0 <mark>M</mark> 0	9.6 × 3.3	1.2	T1N0M0	Papilotubular carcinoma
4	T2N0M0	14.0 × 9.0	2.4	T2N0M0	Papilotubular carcinoma
5	T1N0M0	11.5 × 6.7	1.1	T1N0M0	Papilotubular carcinoma
6	T2N0M0	22.0 × 9.0	1.1	T2N1M0	Invasive lobular carcinoma
7	T1N0M0	8.1 × 8.7	2.5	T1N0M0	Schirrous carcinoma
8	T1N0M0	11.3 × 13.8	1.3	T1N0M0	Invasive lobular carcinoma
9	T1N0M0	15.0 × 15.0	1.0	T1N0M0	Papilotubular carcinoma
10	TONOMO	Not de- tected	1.8	T2N0M0	Papilotubular carcinoma

SUV max, maximum standardized uptake value; Tis, carcinoma *in situ*; US, ultrasound.

Table 1 The characteristics of 118 patients with 122 lesions

	Lesions $(n=122)$
Breast cancer	114
Clinical stage	
Stage 0	16
1	35
IIA	44
IIB	16
IIIA	1
IIIB	1
IIIC	1
IV	0
Surgical methods	
Conservative surgery	36
Modified radical mastectomy	72
Simple mastectomy	3
Tumor resection	3
Histopathological findings	
Papilotubular carcinoma	71
Schirrous carcinoma	21
Noninvasive ductal carcinoma	12
Mucinous carcinoma	5
Invasive lobular carcinoma	5
Pathological T stage	
Tis	8
T1	45
T2	52
тз	8
T4	1
Benign tumor	8
Histopathological findings	
Fibroadenoma	2
Intraductal papiloma	1
Adenosis	1
Others	4

Others, others were diagnosed as benign by biopsy; Tis, carcinoma *in situ*; however, the histopathological findings were not identified. These four cases were followed up for 2 years, however, malignant findings were not detected.

Improved breast cancer detection of prone breast FDG-PET in 118 patients Nuclear Medicine Communications 2008, 29:885–893

This figure shows our breast-positioning device. The patients were in the prone position with their arms at their sides. For positioning, a foam cushion on the scanner table was adapted with a hole that allows the breasts to be unconstrained.

False-negative breast cancer in the whole-body PET image but a true positive in the prone breast PET image of a 56-year-old woman with breast cancer stage I. (a) ¹⁸F-FDG avid lesions were not detected on the axial image of the whole-body PET image. (b) ¹⁸F-FDG was accumulated in the right mammary gland on the axial image of the prone breast PET image (FDG-SUV max 1.2) (arrow). (c) The postoperative microscopic findings show papilotubular carcinoma (hematoxylin and eosin × 200). ¹⁸F-FDG, fluorine-18 fluorodeoxyglucose; max, maximum; SUV, standardized uptake value.

Improved breast cancer detection of prone breast FDG-PET in 118 patients Nuclear Medicine Communications 2008, 29:885–893

False-negative breast cancer in the whole-body PET image but a true positive in the prone breast PET image in a 49-year-old woman with breast cancer stage 0. (a) ¹⁸F-FDG avid lesions were not seen on the axial image of the whole-body PET image. (b) ¹⁸F-FDG was accumulated in the left mammary gland on the axial image of the prone breast PET image (FDG-SLIV max 1.8) (arrow). (c) The postoperative microscopic findings show papilotubular carcinoma (hematoxylin and eosin × 200). ¹⁸F-FDG, fluorine-16 fluorodeoxyglucose; max, maximum; SUV, standardized uptake value.

Improved breast cancer detection of prone breast FDG-PET in 118 patients Nuclear Medicine Communications 2008, 29:885–893

45

• Dual-time-point + prone PET/CT vs Dynamic MRI

TABLE 2: MRI and Early and Late PET Results in 35 Malignant and Benign Lesions with a Diameter > 10 mm

Performance	MRI	Early PET	Late PET
Accuracy (%)	97 (91–100)	77 (63–92)	89 (78–100)
Sensitivity (%)	100 (87–100)	75 (56–88)	88 (70–96)
Specificity (%)	67 (13–98)	100 <mark>(</mark> 31–100)	100 (31–100)

Note—Data in parentheses are 95% CIs. PET was performed with patient in prone position.

TABLE 3: MRI and Early and Late PET Results in 20 Malignant and Benign Lesions with a Diameter < 10 mm

Performance	MRI	Early PET	Late PET
Accuracy (%)	90 (76–100)	55 (32–78)	75 (55–95)
Sensitivity (%)	92 (62–100)	31 (10–61)	62 (32–85)
Specificity (%)	86 (42–100)	100 (56— <mark>1</mark> 00)	100 (56–100)

Note—Data in parentheses are 95% CIs. PET was performed with patient in prone position.

Dual-Time-Point 18F-FDG PET/CT Versus Dynamic Breast MRI of Suspicious Breast Lesions AJR 2008; 191:1323–1330

46

Malignancy vs Benign tumor

SUVmax \geq 2.5 or Δ SUVmax>0

Invasive ductal carcinoma

Dual-Time-Point 18F-FDG PET/CT Versus Dynamic Breast MRI of Suspicious Breast Lesions AJR 2008; 191:1323–1330

48

Invasive lobular carcinoma

Dual-Time-Point 18F-FDG PET/CT Versus Dynamic Breast MRI of Suspicious Breast Lesions AJR 2008; 191:1323–1330

case

- 10499408
- 54 y/o female is for physical check-up
- intraductal carcinoma of left breast

• FDG **PEM**

Figure 1. PET mammography system and mammography gantry. Film holder has been rotated to the right side to make room for lower detector (arrow). Upper detector (arrowhead) is positioned above compression paddle, which compresses the breast against the lower detector. (Reprinted, with permission, from reference 17.)

Figure 2. PET mammography detector interfacing with mammography gantry. Upper detector (arrowhead) can be moved vertically toward or away from lower detector (arrow). In addition, the entire detector assembly can be pivoted, allowing acquisition of oblique views. Finally, the entire gantry can be moved up and down by using a motorized control to adjust to the height of each patient (Reprinted, with permission, from reference 17.)

53

• FDG PEM

Table 1 Summary of the Results of Published FDG PEM Studies								
Authors and Year of Study	No. of Patients	Average Lesion Size (cm)*	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)		
Murthy et al 2000	18	NA	50	100	100	67		
Levine et al 2003	14	2.0(1.0-5.5)	86	91	86	91		
Rosen et al 2005	23	2.1(0.4-4.6)	86	33†	90	25†		
Tafra et al 2005	44 + 10	$2.2^{\ddagger}(0.1-10.0)$	88	NA	NA	45		
Berg et al 2006	92	$2.1^{\ddagger}(0.3-10.0)$	90	86	88	88		
Rosen et al 2006	50	1.4 (0.8-4.0)	87	70	71	86		

Note.—NA = not available, NPV = negative predictive value, PPV = positive predictive value.

*Numbers in parentheses are ranges.

[†]Only two of 23 were true negative, according to Breast Imaging Reporting and Data System criterion 5 only. [‡]Median size, invasive lesions only.

54

• FDG PEM

Figure 4. Images of a 38-year-old woman with T1cN1M0 breast carcinoma in the right breast. (a) Spot-compression magnification conventional

mammogram demonstrates architectural distortion and segmentally distributed microcalcifications (arrows), (b) US scan demonstrates an irregular 1.4-cm mass (*). (c) Transverse PET mammography image demonstrates segmental increased FDG activity (arrows) that mirrors the mammographic abnormality. Histologic examination demonstrated a 1.6-cm invasive adenocarcinoma with extensive ductal carcinoma in situ.

Breast cancer staging (AJCC 7th edition)

56

Table 1

American Joint Committee on Cancer (AJCC) **TNM Staging System For Breast Cancer**

Primary Tumor (T)

Definitions for classifying the primary tumor (T) are the same for clinical and for pathologic classification. If the measurement is made by the physical examination, the examiner will use the major headings (T1, T2, or T3). If other measurements, such as mammographic or pathologic measurements, are used, the subsets of T1 can be used. Tumors should be measured to the nearest 0.1 cm increment.

			NO	
TX		Primary tumor cannot be assessed	N1	
TO		No evidence of primary tumor		
Tis		Carcinoma in situ		
Tis	(DCIS)	Ductal carcinoma in situ		
Tis	(LCIS)	Lobular carcinoma in situ		
Tis	(Paget's)	Paget's disease of the nipple with no tumor		
Note size	e: Paget's of the turr	disease associated with a tumor is classified according to the lor.		
T1		Tumor 2 cm or less in greatest dimension	N3	
	T1mic	Microinvasion 0.1 cm or less in greatest dimension		
	T1a	Tumor more than 0.1 cm but not more than 0.5 cm in greatest dimension		
	T1b	Tumor more than 0.5 cm but not more than 1 cm in greatest dimension		
	T1c	Tumor more than 1 cm but not more than 2 cm in greatest dimension		
10.00				

- Tumor more than 2 cm but not more than 5 cm in greatest T2 dimension Tumor more than 5 cm in greatest dimension
- **T3 T4** Tumor of any size with direct extension to (a) chest wall or (b) skin, only as described below
 - T4a Extension to chest wall, not including pectoralis muscle

- T4b Edema (including peau d'orange) or ulceration of the skin of the breast, or satellite skin nodules confined to the same breast
- T4c Both T4a and T4b
- T4d Inflammatory carcinoma

Regional Lymph Nodes (N)

Clin	ical	
NX		Regional lymph nodes cannot be assessed (e.g., previously removed)
NO		No regional lymph node metastasis
N1		Metastasis to movable ipsilateral axillary lymph node(s)
N2		Metastases in ipsilateral axillary lymph nodes fixed or matted, or in <i>clinically apparent</i> * ipsilateral internal mammary nodes in the <i>absence</i> of clinically evident axillary lymph node metastasis
	N2a	Metastases in ipsilateral axillary lymph nodes fixed to one another (matted) or to other structures
	N2b	Metastasis only in <i>clinically apparent</i> * ipsilateral internal mammary nodes and in the <i>absence</i> of clinically evident axillary lymph node metastasis
N3		Metastasis in ipsilateral infraclavicular lymph node(s) with or without axillary lymph node involvement, or in <i>clinically</i> <i>apparent</i> * ipsilateral internal mammary lymph node(s) and in the <i>presence</i> of clinically evident axillary lymph node metastasis; or metastasis in ipsilateral supraclavicular lymph node(s) with or without axillary or internal mammary lymph node involvement
	N3a	Metastasis in ipsilateral infraclavicular lymph node(s)
	N3b	Metastasis in ipsilateral internal mammary lymph node(s) and axillary lymph node(s)

N3c Metastasis in ipsilateral supraclavicular lymph node(s)

*Clinically apparent is defined as detected by imaging studies (excluding lymphoscintigraphy) or by clinical examination or grossly visible pathologically.

Staging continued on next page (ST-2)

Breast cancer staging (AJCC 7th edition)

57

Table 1 (con	tinued)	pN1c	Metastasis in 1 to 3 axillary lymph nodes and in internal	
Pathologic (pN)*		mammary nodes with microscopic disease detected by sentinel lymph node dissection but not <i>clinically apparent.**</i> (If associated with greater than 3 positive axillary lymph	
pNX	Regional lymph nodes cannot be assessed (e.g., previously removed, or not removed for pathologic study)		nodes, the internal mammary nodes are classified as pN3b to reflect increased tumor burden)	
pN0	No regional lymph node metastasis histologically, no additional examination for isolated tumor cells (ITC)	pN2	Metastasis in 4 to 9 axillary lymph nodes, or in <i>clinically</i> apparent* internal mammary lymph nodes in the absence of	
Note: Isolated cell clusters no immonohistocl	tumor cells (ITC) are defined as single tumor cells or small ot greater than 0.2 mm, usually detected only by hemical (IHC) or molecular methods but which may be	pN2a	Metastasis in 4 to 9 axillary lymph nodes (at least one tumor deposit greater than 2.0 mm)	
verified on H&E stains. ITCs do not usually show evidence of malignant activity e.g., proliferation or stromal reaction.		pN2b	Metastasis in clinically apparent* internal mammary lymph nodes in the absence of axillary lymph node metastasis	
pN0(i-)	No regional lymph node metastasis histologically, negative IHC	pN3	Metastasis in 10 or more axillary lymph nodes, or in infraclavicular lymph nodes, or in <i>clinically apparent</i> * insilateral internal mammary lymph nodes in the processors	
pN0(i+)	No regional lymph node metastasis histologically, positive IHC, no IHC cluster greater than 0.2 mm		of 1 or more positive axillary lymph nodes; or in more than 3 axillary lymph nodes with clinically negative microscopic	
pN0(mol-)	No regional lymph node metastasis histologically, negative molecular findings (RT-PCR) ⁶		metastasis in internal mammary lymph nodes; or in ipsilateral supraclavicular lymph nodes	
pN0(mol+)	No regional lymph node metastasis histologically, positive molecular findings (RT-PCR) ⁶	pN3a	Metastasis in 10 or more axillary lymph nodes (at least one tumor deposit greater than 2.0 mm), or metastasis to the infraclavicular lymph nodes	
Classification sentinel lymph ymph node di designated (sr	is based on axillary lymph node dissection with or without node dissection. Classification based solely on sentinel ssection without subsequent axillary node dissection is n) for "sentinel node," e.g., pN0(i+) (sn).	pN3b	Metastasis in <i>clinically apparent</i> * ipsilateral internal mammary lymph nodes in the <i>presence</i> of 1 or more positive axillary lymph nodes; or in more than 3 axillary lymph nodes and in internal mammary lymph nodes with	
RT-PCR: reve	erse transcriptase/polymerase chain reaction.		microscopic disease detected by sentinel lymph node dissection but not clinically apparent**	
pN1	Metastasis in 1 to 3 axillary lymph nodes, and/or in internal mammary nodes with microscopic disease detected by sentinel lymph node dissection but not clinically apparent**	pN3c	Metastasis in ipsilateral supraclavicular lymph nodes	
pN1mi	Micrometastasis (greater than 0.2 mm, none greater than 2.0 mm)	 Clinically apparent is defined as detected by imaging studies (excluding lymphoscintigraphy) or by clinical examination. ** Not clinically apparent is defined as not detected by imaging studies (concludes the propagation interaction) or by clinical examination. 		
pN1a	Metastasis in 1 to 3 axillary lymph nodes			
pN1b	Metastasis in internal mammary nodes with microscopic disease detected by sentinel lymph node dissection but not clinically apparent**	(excludin	g tymphosennigraphy) or by ennear examination.	
			Staging continued on next page (ST-3)	

Breast cancer staging (AJCC 7th edition)

58

Table 1 (continued)

- Distant Metastasis (M)
- Distant metastasis cannot be assessed MX
- M0 No distant metastasis
- M1 Distant metastasis

STAGE GROUPING

Stage 0	Tis	NO	MO	Stage IIIB	Τ4	NO	MO		
Stage I	T1*	NO	MO		T4	N1	MO		
Stage IIA	TO	N1	MO		T4	N2	MO		
	T1*	N1	MO	Stage IIIC	Any T	N3	MO		
	T2	NO	MO	Stage IV	Any T	Any N	M1		
Stage IIB	T2	N1	MO						
	Т3	NO	MO	Note: Stage designation may be					
Stage IIIA	то	N2	MO	changed if post-surgical imaging					
	T1*	N2	MO	studies reveal the presence of dis metastases, provided that the stu are carried out within 4 months of					
	T2	N2	MO						
	тз	N1	MO	diagnosis in	n the absence of disease n and provided that the				
	тз	N2	MO	progression					
* T1 include	es T1mio	6		patient has not received neoadjuvant therapy.					
HISTOPAT	HOLOG	IC TYP	E	Medullary v	with lym	phoid str	oma		
The histopa	thologic	types a	are the	Mucinous					
following: In situ Care	cinoma	s		Papillary (p	redomin	nantly em)			
NOS (not of	therwise	e specifi	ed)	Tubular					
Intraductal		1212-2416		Lobular					
Paget's dise	ease an	d intrad	uctal	Paget's disease and infiltrating					
Invasive Carcinomas			Undifferent	Undifferentiated					
NOS				Squamous	cell				
Ductal				Adenoid cy	stic				
Inflammator	ry			Secretory					
Medullary, I	VOS			Cribriform					

HISTOPATHOLOGIC GRADE (G)

All invasive breast carcinomas with the exception of medullary carcinoma should be graded. The Nottingham combined histologic grade (Elston-Ellis modification of Scarff-Bloom-Richardson grading system) is recommended.12 The grade for a tumor is determined by assessing morphologic features (tubule formation, nuclear pleomorphism, and mitotic count), assigning a value of 1 (favorable) to 3 (unfavorable) for each feature, and adding together the scores for all three categories. A combined score of 3-5 points is grade 1: a combined score of 6-7 points is grade 2; a combined score of 8-9 points is grade 3.

¹Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histologic grade in breast cancer: experience from a large study with long-term follow-up. Histopatholology 1991;19:403-410.

² Fitzgibbons PL, Page DL, Weaver D et al. Prognostic factors in breast cancer. College of American Pathologists consensus statement 1999. Arch Pathol Lab Med 2000;124:966-978.

HISTOLOGIC GRADE (NOTTINGHAM COMBINED HISTOLOGIC GRADE IS RECOMMENDED)

- GX Grade cannot be assessed
- G1 Low combined histologic grade (favorable)
- G2 Intermediate combined histologic grade (moderately favorable)
- G3 High combined histologic grade (unfavorable)

Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original and primary source for this information is the AJCC Cancer Staging Manual, Sixth Edition (2002) published by Springer-Verlag New York, (For more information, visit www.cancerstaging.net.) Any citation or quotation of this material must be credited to the AJCC as its primary source. The inclusion of this information herein does not authorize any reuse or further distribution without the expressed, written permission of Springer-Verlag New York, Inc., on behalf of the AJCC.

- Axillary nodal status is important for treatment planning and prognosis, even microscopic metastasis
- There is currently no clinical role for routine FDG PET axillary staging in early stage breast cancer, because of low sensitivity for axillary nodal metastasis (can not replace sentinel LN sampling).
- Because of high specificity for axillary metastasis, there may be a clinical role for preoperative FDG PET in locally advanced breast cancer, which helps accurately determine the extent of nodal metastasis (especially extra-axillary LNs).

61

early studies vs prospective multicenter trial

Table 2 Results of Early Studies of FDG PET in Axillary Nodal Staging versus Results of a Multicenter Trial					
Authors and Year of Study	No. of Patients	Sensitivity (%)	Specificity (%)		
Utech et al 1996	124	100	75		
Avril et al 1996	51	79	96		
Adler et al 1997	52	95	66		
Smith et al 1998	50	90	97		
Crippa et al 1998	68	85	91		
Wahl et al 2004	308	61	80		

Note.—Results of the early studies suggested high sensitivity and high specificity for nodal disease; these were not found in the 2004 multicenter trial, which evaluated 360 women with newly diagnosed breast carcinoma (axillae were assessed in only 308 patients). In the later trial, almost 50% of the women had small T1 breast cancers, whereas the earlier trials were biased toward larger primary lesions.

62

Table 1. Largest Prospective Series of Axillary Nodal Staging with Positron Emission Tomography Using ¹⁸F-fluorodeoxyglucose in Breast Cancer

Series	Number of Patients	Sensitivity	Specificity
Tse ¹³	10	57 (4/7)	100 (3/3)
Adler 1997 ¹⁴	52	95 (19/20)	66 (21/32)
Utech ⁴²	122	100 (44/44)	75 (60/80)
Avril ⁴³ overall	51	79 (19/24)	96 (26/27)
T1 tumors	18	33 (2/6)	100 (12/12)
>T1 tumors	23	94 (17/18)	100 (5/5)
Crippa ²⁶	72	85 (23/27)	91 (41/45)
Smith ⁴⁴	50	90 (19/21)	97 (28/29)
Greco ⁴⁵	167	94 (68/72)	86 (82/95)
Schirrmeister ⁸⁴	113	79 (27/34)	92 (73/79)
Wahl ⁴⁶	308	61	80

Numbers in parentheses are patient numbers used to derive sensitivity and specificity values.

63

early-stage breast cancer
 FDG PET vs sentinel LN biopsy

Table 3 Results of Studies of FDG PET in Staging Axillary Nodal Disease						
Authors and Year of Study	No. of Patients	Sensitivit (%)	y Specificity (%)			
van der Hoeven et al 2002	80	25	97			
Keleman et al 2003	15	20	94			
Barranger et al 2003	32	20	100			
Wahl et al 2004	308	61	80			
Zornoza et al 2004	200	84	98			
Fehr et al 2004	30	20	93			
Lovrics et al 2004	98	40	97			
Kumar et al 2006	80	44	95			
Gil-Rendo et al 2006	275	84	98			
Chung et al 2006	54	60	100			

Note.—Recent studies demonstrate a consistently high specificity for axillary nodal metastases but lower sensitivity compared with that of sentinel lymph node biopsy. FDG PET is not sufficient for exclusion of axillary metastases, which requires histologic evaluation.

64

early-stage breast cancer
 FDG PET vs sentinel LN biopsy

Table 3 Results of Studies of FDG PET in Staging Axillary Nodal Disease							
Authors and Year of Study	No. of Patients	Sensitivity (%)	Specificity (%)				
van der Hoeven et al 2002	80	25	97				
Keleman et al 2003	15	20	94				
Barranger et al 2003	32	20	100				
Wahl et al 2004	308	61	80				
Zornoza et al 2004	200	84	98				
Fehr et al 2004	30	20	93				
Lovrics et al 2004	98	40	97				
Kumar et al 2006	80	44	95				
Gil-Rendo et al 2006	275	84	98				
Chung et al 2006	54	60	100				

Note.—Recent studies demonstrate a consistently high specificity for axillary nodal metastases but lower sensitivity compared with that of sentinel lymph node biopsy. FDG PET is not sufficient for exclusion of axillary metastases, which requires histologic evaluation.

Figure 2. A potential algorithm that may be cost effective in patients with more advanced T-stage primary tumors or with questionably palpable nodes.

66

a.

h.

Figure 6. Local metastasis at PET/CT performed for pretreatment staging of invasive ductal carcinoma in a 65-year-old woman. (a) Axial CT image shows an enlarged lymph node (arrow) in the left axillary area, a finding that was not considered to represent metastasis. (b) Axial PET/CT image shows high FDG uptake (maximum SUV, 4.2) in the lymph node (arrow), a finding suggestive of metastasis. Metastasis was confirmed at pathologic analysis.

67

• IM nodes

Table 4 Results of Studies of FDG PET of the IM Nodes						
Authors and Year of Study	No. of Patients	Patients with Positive IM Nodes (%)	Comments			
Bernstein et al 2000	15	20	Medial T2 tumors, 2 of 3 cases were biopsy proved			
Danforth et al 2002	46	25	Stage II–IV disease			
Bellon et al 2004	28	25	LABC			
Zornoza et al 2004	200	8	High-risk axillae			
Gil-Rendo et al 2006	275	8	High-risk axillae			

68

63 -263.50nn

69

Metastatic & recurrent disease

- The most important advantage of FDG PET/CT compared with other imaging modalities is detection of <u>unsuspected metastasis</u> during a single whole body examination, especially in advanced stage breast cancer.
- equivocal or suspicious findings on conventional imaging.

• Guide treatment planning

Metastatic & recurrent disease

Table 5

Results of Studies of FDG PET and PET/CT in Systemic Disease Staging and Restaging of Recurrent Breast Cancer

No. of Patients	Sensitivity (%)	Specificity (%)	Comments*
57	03	79	False-negative lesions in hone
117	93	75	Taise-negative resions in bone
73	85	90	IM or mediastinal nodes
60	89	84	Suspected recurrence
61			59% NPV, 85% PPV, FDG uptake was prognostic
141			Worse prognosis for inner quadrant tumors with
58			90% accuracy for PET/CT
75			86% accuracy for PET/CT, 77% accuracy for CT alone
	No. of Patients 57 117 73 60 61 141 58 75	No. of Patients Sensitivity (%) 57 93 117 93 73 85 60 89 61 141 58 75	No. of Patients Sensitivity (%) Specificity (%) 57 93 79 117 93 75 73 85 90 60 89 84 61 141 58 75

*NPV = negative predictive value, PPV = positive predictive value.

Metastatic & recurrent disease

72

Table 3. True positive (TPR) and false positive rate (FPR) of studies evaluating FDG PET for the diagnosis of recurrent and metastatic breast cancer (January 1995–June 2004): patient-based data

Author	Year	n (patients)	TPR (%) (sensitivity)	FPR (%) (1 - specificity)
Bender et al. [8]	1997	75	80.0	3.6
Moon et al. [40]	1998	57	93.1	21.4
Smith et al. [10]	1998	50	90.5	3.4
Hathaway et al. [41]	1999	10	100.0	0.0
Rostom et al. [42]	1999	74	85.7	0.0
Hubner et al. [31]	2000	64	85.7	27.3
Lonneux et al. [28]	2000	39	93.9	50.0
Kim et al. [43]	2001	27	94.1	20.0
Ohta et al. [11]	2001	51	77.8	2.4
Dose et al. [12]	2002	50	86.2	9.5
Liu et al. [27]	2002	30	96.4	100.0
Suarez et al. [44]	2002	38	92.3	25.0
Goerres et al. [30]	2003	32	100.0	27.8
Gallowitsch et al. [29]	2003	62	97.0	17.9
Kamel et al. [45]	2003	60	94.3	8.0
Van der Hoeven et al. [26]	2004	48	55.6	18.9
73

Table 5. True positive (TPR) and false positive rate (FPR) of studies evaluating FDG-PET for the diagnosis of recurrent and metastatic breast cancer (January 1995–June 2004): Lesion-based data

 Author	Year	n (lesions)	TPR (%) (sensitivity)	FPR(%)(1 - specificity)
Bender et al. [8]	1997	80	85.4	20.5
Moon et al. [40]	1998	375	91.7	3.6
Kim et al. [43]	2001	61	95.8	15.4
Gallowitsch et al. [29]	2003	135	56.5	11.1
Kamel et al. [45]	2003	118	96.6	16.7
Lin et al. [46]	2003	117	85.2	5.6
Yang et al. [47]	2002	127	95.2	9.1

• Bony metastasis

most common site of distant metastasis (90%) most common initial distant metastasis

osteoblastic, osteolytic, mixed, or early marrow metastasis

75

	Sensitivity	Specificity	Accuracy
Bone scintigraphy	78.2 (43/55)	82.4 (28/34)	79.8 (71/89)
FDG-PET	80.0 (44/55)	88.2 (30/34)	83.1 (74/89)

The test showed no significant differences

Table 2. The visualisation rates of bone scintigraphy and FDG-PET

 for the different CT types of bone metastases

CT type	Bone scintigraphy	FDG-PET	p value
Blastic (18)	100.0 (18/18)	55.6 (10/18)	<i>p</i> <0.0781
Lytic (10)	70.0 (7/10)	100.0 (10/10)	NS
Mixed (19)	84.2 (16/19)	94.7 (18/19)	NS
Invisible (8)	25.0 (2/8)	87.5 (7/8)	<i>p</i> <0.0313

Fig. 5. Box-whisker graph of SUV_{mean} values of the different types of bone metastases

Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer Eur J Nucl Med Mol Imaging (2005) 32:1253–1258

Fig. 2. a Axial CT image of a lytic-type metastasis in a 75-year-old man with breast carcinoma. A lytic metastasis is visible in the right 10th rib (*arrow*).b Posterior bone scintigram. The 10th rib contains a lytic metastasis in the form of a hot lesion (*arrow*), highly suggestive of a metastasis. c Axial FDG-PET image. Uptake was observed in the lytic metastasis to the 10th rib (*arrow*)

Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer Eur J Nucl Med Mol Imaging (2005) 32:1253–1258

78

Fig. 3. a Axial CT image of a mixed-type metastasis in a 49year-old woman after surgery for breast cancer. A mixed blasticlytic metastasis is seen in the vertebral body of T7 (arrow). b Posterior whole-body bone scintigram. High uptake is seen in the vertebral body of T7 (arrow). Multiple bone metastases were suspected because of the presence of uptake in the right 5th and 8th ribs, suggestive of metastases. c Axial FDG-PET image. FDG-PET showed high uptake in T7 (arrow), corresponding to the uptake on bone scintigraphy

Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer Eur J Nucl Med Mol Imaging (2005) 32:1253–1258

C

Fig. 4. a Coronal CT image of an invisible metastasis in a 55-yearold woman after surgery for breast cancer. The metastasis should be present at the site indicated by the arrow, but could not be clearly seen. b Posterior bone scintigrams. Uptake in the ilium bone metastasis is unclear (arrow). c Coronal FDG-PET image. Uptake was seen in the ilium (arrow). This metastasis had a SUV_{mean} of 2.9. d Gadolinium-enhanced MR image with coronal fat suppression. Enhanced signal intensity is seen in the ilium (arrow), suggesting a bone metastasis. The lesion grew larger during follow-up, suggesting bone metastases clinically

Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer Eur J Nucl Med Mol Imaging (2005) 32:1253–1258

80

d

	Proof	No.	PET/CT		СТ			
			Finding	No.	Positive	Equivocal	Negative	
Breast	Malignant	9	Positive	7	5	2	0	
			Negative	2	0	0	2	
	Benign	3	Positive	2	1	1	0	
			Equivocal	1	0	0	1	
Chest wall	Malignant	2	Positive	2	2	0	0	
Subtotal: breast and chest wall	Malignant	11	Positive	9	7	2	0	
			Negative	2	0	0	2	
	Benign	3	Positive	2	1	1	0	
			Equivocal	1	0	0	1	
Axillary LN	Malignant	10	Positive	9	7	2	0	
			Negative	1	0	0	1	
Internal mammary LN	Malignant	4	Positive	3	0	1	2	
			Negative	1	0	0	1	
Mediastinal or hilar LN	Malignant	10	Positive	9	5	2	2	
			Negative	1	1	0	0	
	Benign	1	Equivocal	1	0	0	1	
Clavicular LN	Malignant	4	Positive	4	2	1	1	
	Benign	1	Negative	1	0	1	0	
Subtotal: LN regions	Malignant	28	Positive	25	14	6	5	
			Negative	3	1	0	2	
	Benign	2	Equivocal	1	0	0	1	
			Negative	1	0	1	0	

Lung	Malignant	10	Positive	8	8	0	0
			Negative	2	2	0	0
	Benign	4	Equivocal	1	0	1	0
			Negative	3	0	3	0
Liver	Malignant	4	Positive	3	3	0	0
			Negative	1	0	1	0
	Benign	1	Equivocal	1	0	1	0
Bone	Malignant	11	Positive	11	8	0	3
	Benign	2	Positive	2	2	0	0
Others ^a	Malignant	5	Positive	4	3	0	1
			Negative	1	1	0	0
	Benign	1	Positive	1	1	0	0
Subtotal: other regions	Malignant	30	Positive	26	22	0	4
			Negative	4	3	1	0
	Benign	8	Positive	3	3	0	0
			Equivocal	2	0	2	0
			Negative	3	0	3	0
Total	Malignant	69	Positive	60	43	8	9
			Negative	9	4	1	4
	Benign	13	Positive	5	4	1	0
			Equivocal	4	0	2	2
			Negative	4	0	4	0

Positive: definitely positive finding; negative: definitely negative finding

LN Lymph node

^aBrain, thyroid (2 incl. 1 benign), adrenal gland, uterine (negative PET/CT), and abdominal LN

83

• Asymptomatic treated breast cancer, elevated tumor markers, FDG PET/CT has 85% sensitivity for diagnosing recurrence, and affect clinical management in 51% of patients.

TABLE 4

Comparison of Contrast-enhanced CT and PET/CT Performance in 37 Patients With Suspected Breast Cancer Recurrence

	СТ	PET/CT
TP, n	14	17
TN, n	8	13
FP, n	9	4
FN, n	6	3
Sensitivity, %	70	85
Specificity, %	47	76
Accuracy, %	59	81
PPV, %	56	81
NPV, %	57	81

TP indicates true positive; TN, true negative; FP, false positive; FN, false negative; PPV, positive predictive value; NPV, negative predictive value.

84

• In setting of locoregional recurrence, FDG PET affects treatment in up to 44% of patients.

Fig. 1.—Bar graph illustrates impact of FDG PET on therapeutic plan by category of referral in 125 patients with advanced breast cancer. Black bars represent patients with locoregional disease, and gray bars represent patients being evaluated for response to therapy, light gray bars represent patients with equivocal findings on conventional imaging, and white bars represent patients with known metastases being evaluated for extent of disease. Above each category, *p* values from chi-square analysis of impact of FDG PET on alteration of management plan for each referral category are presented.

Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer *AJR* 2004; 183(2):479-486

85

• In setting of locoregional recurrence, FDG PET affects treatment in up to 44% of patients.

TABLE 1 Alteration of Therapeutic Plan Based on FDG PET Findings in 40 Patients, by Category of Referral							
Change in Plan	Response to Treatment (n = 43)	Locoregional Disease (n = 39)	Equivocal Findings ^a (n = 25)	Evaluate Extent of Known Metastases (n = 13)	Increase in Tumor Markers (n = 5)	Total (n = 125)	
Intermodality							
From surgery to systemic treatment	2	11	0	0	1	14	
From radiation to systemic treatment	0	2	1	0	0	3	
From treatment to no treatment	2	0	0	0	0	2	
From no treatment to surgery	0	0	1	0	0	1	
From systemic treatment to radiation and chemotherapy	0	0	1	0	0	1	
From no treatment to chemotherapy	1	0	0	0	0	1	
From systemic treatment to surgery and radiation	1	0	0	0	0	1	
Intramodality							
Systemic treatment	8	2	2	0	2	14	
Radiation plan	0	2	0	1	0	3	
Total changed	14 (33)	17 (44)	5 (20)	1 (8)	3 (60)	40 (32)	

Note.—Numbers in parentheses are percentages. See Figure 1 for *p* values from chi-square analysis of the four largest referral categories. ^aOn conventional imaging.

Impact of FDG PET on defining the extent of disease and on the treatment of patients with recurrent or metastatic breast cancer *AJR* 2004; 183(2):479-486

Breast cancer staging (NCCN)					
NCCN°	Practice Guidelines in Oncology – V.2.2010	Invasive Breast Cancer	Guidelines Index Breast Cancer TOC Staging, Discussion, References		
CLINICAL STAGE	WORKUP				
Stage I T1, N0, M0 or Stage IIA T0, N1, M0 T1, N1, M0 T2, N0, M0 or Stage IIB T2, N1, M0 T3, N0, M0 or T3, N1, M0	General workup including • History and physical ex • CBC, platelets • Liver function tests and • Diagnostic bilateral mar • Pathology review ^d • Determination of tumor HER2 status ^b • Genetic counseling if pa Optional studies for brea • Breast MRI ^d If clinical stage IIIA (T3, N • Bone scan (category 2B • Abdominal ± pelvis CT of • Chest imaging Additional studies as dire • Bone scan indicated if II • Abdominal ± pelvis CT of liver function tests, abd abdomen or pelvis • Chest imaging (if pulmo	alkaline phosphatase mogram, ultrasound as necessary estrogen/progesterone receptor (ER/PR) status and tient is high risk for hereditary breast cancer ^c at imaging: 1, M0) consider: r US or MRI cted by symptoms: ^e ocalized bone pain or elevated alkaline phosphatase r US or MRI if elevated alkaline phosphatase, abnormal pminal symptoms, abnormal physical examination of the nary symptoms are present)	<u>See Locoregional</u> → <u>Treatment</u> (BINV-2)		
^a The panel endorses the ^b See Principles of HER2 ^c See NCCN Genetics/Far ^d See Principles of Defar	College of American Pathology Proto Testing (BINV-A). nilial High-Risk Assessment: Breast a test Breast Michael (Bither).	col for pathology reporting for all invasive and non-invasive carcinor nd Ovarian Guidelines.	nas of the breast. <u>http://www.cap.org.</u>		
Note: All recommendations Clinical Trials: NCCN believ	are category 2A unless otherwise indicate stat the best management of any cancer	ging on chinical stage 1, ii, or operable ill breast cancer patient is in a clinical trial. Participation in clinical trials is especially encoura	jed.		

- The use of PET or PET/CT scanning is not indicated in the staging of clinical stage I, II or operable III breast cancer
 - 1. High false-negative rate in <1 cm tumor or low-grade tumor
 - 2. Low sensitivity in detection of axillary nodal metastasis
 - 3. Low pretest probability of distant metastasis, resulting in high false-positive scans

Breast cancer staging (NCCN)					
NCCN [®] Practice Guide in Oncology –	elines V.2.2010 Invasive Breast Cancer Staging, Discussion, References				
Preoperative Chemotherap	y Guideline workup				
Stage IIA T2, N0, M0 Stage IIB T2, N1, M0 T3, N0, M0 Stage IIIA T3, N1, M0 and Fulfills criteria for breast conserving surgery except for tumor size	General workup including: History and physical CBC, platelets Liver function tests and alkaline phosphatase Diagnostic bilateral mammogram, ultrasound as necessary Pathology review ^a Determination of tumor ER/PR status and HER2 status ^b Genetic counseling if patient is high risk for hereditary breast cancer ^e Dytional additional studies for breast imaging: Breast MR ^{ic} fclinical stage IIIA (T3, N1, M0) consider: Bone scan (category 2B) Abdominal ± pelvis CT or US or MRI Chest imaging widditional studies as directed by symptoms: ^d Bone scan indicated if localized bone pain or elevated alkaline phosphatase Abdominal ± pelvis CT or US or MRI if elevated alkaline phosphatase, abnormal liver function tests, abdominal symptoms, abnormal physical examination of the abdomen or pelvis Chest imaging (if pulmonary symptoms are present)				
^a The panel endorses the College of American Pathology Protocol for pathology reporting for all invasive and non-invasive carcinomas of the breast. <u>http://www.cap.org</u> ^b See Principles of HER2 Testing (BINV-A). ^C See Principles of Dedicated Breast MEL Testing (BINV-B). The use of PET or PET/CT scanning is not indicated in the staging of clinical stage I, II, or operable III breast cancer. ^c See NCCN Genetics/ramilial High-Risk Assessment: Breast and Ovarian Guidelines.					
rote: All recommendations are category ZA unless o Clinical Trials: NCCN believes that the best managem	therewise malcareo. ent of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.				

Breast cancer staging (NCCN)				
	Guidelines Index			
NCCN [®] Practice Guidelines in Oncology – V.2.2010	Invasive Breast Cancer Staging, Discussion, References			
LOCALLY ADVANCED INVASIVE BREAST CANCER	(NON-INFLAMMATORY)			
CLINICAL STAGE WORKUP				
Stage IIIA • History and phys T0, N2, M0 • CBC, platelets T1, N2, M0 • Liver function te T2, N2, M0 • Diagnostic bilate T3, N2, M0 • Diagnostic bilate Stage IIIA • Prechemotherap Stage IIIB • Prechemotherap T4, N1, M0 • Breast and HER2 Stage IIIC • Optional additions Any T, N3, M0 • Breast MRI ^c Stage IV • Detrict scan (cate Any T, any N, M1 • See Initial Workup	tical exam tests and alkaline phosphatase ral mammogram, ultrasound as v determination of tumor ER/PR status ^b ng if patient is high risk for hereditary I studies or as directed by symptoms staging studies: ^{aa} prov 2B) ic CT or US or MRI (category 2B) egory 2B) for Stage IV Disease (BINV-15)			
 ^b See Principles of HER2 Testing (BINV-A). ^c See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). ⁶ See Principles of Dedicated Breast MRI Testing (BINV-B). 	aging studies are equivocal or suspicious, especially in the setting of locally advanced or metastatic uspected regional nodal disease and/or distant metastases in LABC when used in addition to standard			
Note: All recommendations are category 2A unless otherwise indicate Clinical Trials: NCCN believes that the best management of any cancel	ed. r patient is in a clinical trial. Participation in clinical trials is especially encouraged.			

- PET or PET/CT is an optional additional study in locally advanced breast cancer
 - 1. most useful when standard imaging studies have equivocal or suspicious findings.
 - 2. maybe a useful adjunct to standard imaging studies in detection of extra-axillary nodal metastasis or unsuspected distant metastasis
 - 3. biopsy for conformation of stage IV disease whenever possible

- PET or PET/CT for evaluation of recurrent breast cancer
 - 1. standard imaging studies have equivocal or suspicious findings.
 - 2. biopsy for conformation whenever possible
 - 3. guide treatment planning through determination of disease extent (limited evidence)
- PET or PET/CT is not recommended in post-therapy follow-up of asymptomatic patients.

- *IDC of right breast s/p OP in 2004*
- Suspected liver metastasis by CT on 2008-04-03

- PET or PET/CT is an optional additional study in inflammatory breast cancer
 - 1. most useful when standard imaging studies have equivocal or suspicious findings.
 - 2. maybe a useful adjunct to standard imaging studies in detection of extra-axillary nodal metastasis or unsuspected distant metastasis
 - 3. biopsy for conformation of stage IV disease whenever possible

Breast cancer staging (健保)

		基↔	Jet_+	₫ +	<u>동양</u> 수	支↩	備↩	4
		層↔	₿ +	+ ★	學+	付≁	注₽	
編號₽	診療項目↩	院≁	88 + 89 +	88 +	 ₽+	. %5 +/		
		₩			124	数₽		
ρ	正子造影 Positron emission tomography (PET)+	ę	Ð	ę	ę		修訂適	1
							應症₽	
26072 G B	一全身₽	₩,	\widetilde{X}^{t_2}	\widetilde{X}^{t_2}	\widetilde{X}^{q_2}	36500	ę.	4
:6073 <u>GB</u>	局部↔	₩	\widetilde{X}^{t_2}	¥.ª	X.	26500	ą	-
I	註:實施本項目須符合↓	ę	Ģ	ę	ę		جه ل	
	1. 腫瘤部分之適應症:+							
	(1)乳癌、淋巴癌之分期、治療及懷疑復發或再							
	(4)大肠瘤、直肠瘤、贫道瘤、頸頸部瘤(个包含)							
	加油·西·大中小水油)、小说生加油(中小水油)。 处1、里名姜凉、甲华牌凉及子宫酒凉之於新。							
	合期及懷疑復發或再分期。→							
	(3)肺癌(SPN) ~~							
	(4)甲狀腺癌復發後之再分期。							
	A. <u>分期:評估腫瘤之期別。</u> ↩							
	B.治療:評估腫瘤對治療之反應,擬改變治							
	<u>療方式時。</u>							
	U.懷疑復發或再分期:使用於患者已接受一 時間をすび次応後,店測知以上施設書籍							
	<u>陷役之止就治療後,俱則就似有後質或聘</u> 建西提什須茲之親庭(工得用外周経之道							
	<u>村父の下回後後へ体及(小村用が内住)へ進</u> 縦検査)。↓							
	D. 以電腦斷層或核磁共振無法分期或診斷							
	者以上各階段須符合:經電腦斷層、核磁							
	<u>共振、核子醫學掃瞄等檢查仍無法分期</u>							
	者,或認定電腦斷層、核磁共振等檢查不							
	足以提供足夠資訊以供治療所需者,且須							
	<u>於焉歷甲號明絕行止于遷影之必要性理</u> 击。							
	 王配会腰瘤治癖計套者及病許課任方得出							
	正子造影作為療效評估項目,未有後續積							
	極處置之計書者,不得施行。→							

Monitoring response to therapy

- Neoadjuvant systemic therapy in LABC
 - 1. OS similar to adjuvant systemic therapy
 - 2. improve surgical options
 - 1. extent of residual disease is prognostic for DFS and OS
 - 2. complete pathologic response has improved long-term outcome

Figure 9. NST in women with LABC consists of preoperative systemic chemotherapy aimed at achieving long-term survival, assessing the response to systemic therapy, and improving surgical options. FDG PET has been evaluated at different time points along the course of neoadjuvant therapy (Rx), and its results have been shown to be an accurate predictor of tumor response.

Monitoring response to therapy Neoadjuvent systemic therapy in LABC

• Early response of NST in LABC

Table 7 Results of Studies of Early Response Evaluation with FDG PET							
Authors and Year of Study	No. of Patients	Therapy*	Results [†]				
Wahl et al 1993	11	AC	Response = 22% decrease in SUV, NR = no change				
Schelling et al 2000	24	EC or ET	mCR = 54% decrease in SUV, no mCR = 19% decrease in SUV				
Smith et al 2000	30	CVAP	mCR = 77% decrease in SUV, no mCR = 1% increase in SUV				
*AC = doxorubicin and cyclophosphamide; CVAP = cyclophosphamide, vincristine, doxorubicin, and pred- nisolone; EC = epirubicin and cyclophosphamide; ET = epirubicin and paclitaxel. †mCR = macroscopic complete response, NR = no response.							

• Rousseau et al, <u>>60%</u> decrease in SUV

1st cycle: 61% sensitive, 96% specific
2nd cycle: 89% sensitive, 95% specific
3rd cycle: less sensitive or specific

Monitoring early response to neoadjuvant chemotherapy in stage II and III breast cancer by 18F-FDG PET J Clin Oncol 2006; 24(34):5366-5372

Monitoring response to therapy Neoadjuvent systemic therapy in LABC

• Mid-therapy response of NST in LABC

Table 6 Results of Studies of Midtherapy Response Evaluation with FDG PET					
Authors and Year of Study	No. of Patients	Therapy*	Results [†]		
Wahl et al 1993	11	AC	Response = 48% decrease in SUV, NR = 19% decrease in SUV		
Bassa et al 1996	15	FAC	51% decrease in SUV for all patients		
Schelling et al 2000	24	EC or ET	mCR = 46% decrease in SUV, no mCR = 8% decrease in SUV		
Smith et al 2000	30	CVAP	mCR = 86% decrease in SUV, no $mCR = 40%$ decrease in SUV		
Mankoff et al 2003	35	FAC or AC (weekly)	mCR = 65% decrease in MRFDG, PR = 49% decrease in MR- FDG, NR = 40% decrease in MRFDG (DFS)		

*AC = doxorubicin and cyclophosphamide; CVAP = cyclophosphamide, vincristine, doxorubicin, and prednisolone; EC = epirubicin and cyclophosphamide; ET = epirubicin and paclitaxel; FAC = fluorouracil, doxorubicin, and cyclophosphamide.

[†]mCR = macroscopic complete response, MRFDG = metabolic rate of FDG, NR = no response, PR = partial response.

Decline in FDG uptake by 50% Or more is predictive of a good response to NST

Monitoring response to therapy Neoadjuvent systemic therapy in LABC

• Post-therapy response of NST in LABC

Table 8 Results of Studies of Posttherapy Response Evaluation with FDG PET				
Authors and Year of Study	No. of Patients	Therapy*	Results	
Bassa et al 1996	11	FAC	In the primary tumor, sensitivity = 75%; in the axilla, sensitiv- ity = 42% and specificity = 100%	
Burcombe et al 2002	9	FEC	In the primary tumor, sensitivity = 0% (0 of 9 patients); in the axilla, sensitivity = 0% (0 of 3 patients)	
Kim et al 2002	50	AT or XT	In the primary tumor, sensitivity = 86% and specificity = 83%	
*AT = doxorubicin and docetaxel; FAC = fluorouracil, doxorubicin, and cyclophosphamide; FEC = fluoroura- cil, etoposide, and cisplatin; XT = capecitabine and docetaxel.				

1. conformation of gross residual tumor

2. not allow exclusion of microscopic residual tumor

Monitoring response to therapy

Figure 10. Assessment of tumor response to NST. Coronal FDG PET images of a patient with right LABC (arrows in a), obtained before (a) and 2 months after (b) chemotherapy, show an excellent response. The tumor response was subsequently confirmed at posttherapy bistorethelesis and using

Monitoring response to therapy

a.

Figure 11. Poor response to preoperative chemotherapy in a patient with left LABC. (a) Coronal FDG PET image obtained before therapy shows uptake in the breast primary tumor (double arrows) and myocardial untake (single arrow), which is a normal variant. (b) Image obtained after 2 months of chemotherapy shows little qualitative change in the appearance of the breast tumor (arrows); there was only a small quantitative decline in uptake. The diffuse uptake in the marrow spaces is due to the effect of granulocyte colonystimulating factor. The poor response to treatment was confirmed with multiple subsequent imaging studies and surgical histopathologic analysis.
Monitoring response to therapy

a.

b.

c.

Figure 9. Initial and follow-up imaging of recurrent invasive ductal carcinoma in a 60-year-old woman with a palpable right breast mass after a left total mastectomy. (a) Initial US image shows an irregular hypoechoic mass (arrows) in the right breast. The mass was diagnosed on the basis of US-guided biopsy as invasive ductal carcinoma. Because of the patient's generally poor clinical condition, chemotherapy was administered. (b) Pretreatment coronal PET/CT image shows increased FDG uptake (maximum SUV, 8.7) indicative of hypermetabolism in the lesion (arrow). (c) Posttreatment coronal PET/CT image shows decreased FDG uptake (maximum SUV, 5.6) indicative of a chemotherapy-induced reduction in metabolic activity in the tumor (arrow).

Monitoring response to therapy systemic therapy in metastatic or recurrent breast cancer

• Gennari et al:

after 1st cycle of chemotherapy, >50% decrease in SUV good response to treatment in metastatic disease

> **Role of 18F-FDG PET in the early assessment of response to chemotherapy in metastatic breast patients** *Clin Breast Cancer 2000; 1(2):156-161*

• Dose Schwarz et al:

after 1st cycle of chemotherapy

Early prediction of response to chemotherapy in metastatic breast cancer using sequential F18-FDG PET $J\,Nucl\,Med$ 2005; 46(7):1144-1150

• Stafford et al:

bone metastasis

Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy Acad Radiol 2002; 9(8):913-921