Nuclear Oncology

Remarkable responses to Bi-213-DOTATOC observed in tumors resistant to previous therapy with Y-90/Lu-177-DOTATOC

Case I: Shrinkage of liver lesions and bone metastases after i.a. therapy with 11 GBq Bi-213-DOTATOC

Case II: Response of multiple liver lesions after i.a. therapy with 14 GBq Bi-213-DOTATOC

SNM 2012 Image of the Year 彭南靖 民國105年10月13日

VGHKS-NM Logo

Nanotechnology

Nuclear Oncology-Clinical Application

- Tumor markers
- Radionuclide imaging
- Radionuclide therapy

Tumor markers

 Tumor markers are substances that can be detected in higher-than-normal amounts in the blood, urine, or body tissues of some patients with certain types of <u>cancer</u>. A tumor marker may be made by a tumor itself or by the body in response to the tumor. Such a substance serves to "mark" the tumor; it is a "tumor marker."

Once a particular tumor has been found with a marker, the marker may be a marvel as a means of <u>monitoring</u> <u>the success (or failure) of treatment</u>. The tumor marker level may also reflect the <u>extent</u> (the stage) of the disease, indicate how quickly the cancer is likely to progress and so help determine the prognosis.

Tumor markers

• Radioimmunoassay (RIA)

Tumor markers

Tumor type	Tumor marker
Colorectal cancer	CEA
Pancreas cancer	CA 19.9
Gastric cancer	CA 72-4
HCC	AFP
Lung cancer	Cyfra 21-1
Breast cancer	CA 15.3
Prostate cancer	PSA
Ovary cancer	CA 125
Cervical cancer	SCC

	F		
Oesophagus	31		Thyroid gland
(CEA, SCC)			Calcitonin (C-cell,
Lung		1	CEA)
parvicellular: NSE (CYFRA 21-1)		al	Mamma
non-parvicellular: (CEA, CYFRA 21-1)			CA 15-3, CEA
Liver/Biliary ducts	1	Dal	Stomach
AFP, CA 19-9	A		CA 72-4 (CEA)
Bladder	C N		Pancreas
(CYFRA 21-1)	18		CA 19-9 (CEA)
Uterus	9.9	A	Colorectal
SCC (CEA)	G	2	CEA (CA 19-9)
Prostate gland	Č.	m	Ovaries
PSA	0	7/1	CA 125 (CA 72-4)
Testes			Multiple Myeloma
AFP, HCG			β ₂ -Microglobulin

Colon cancer

CEA CURVE

Clinical Application of Nuclear Oncology

- Tumor markers
- Radionuclide imaging
- Radionuclide therapy

采之欲遺誰?所思在遠道。

Resolution \rightarrow Resolution \rightarrow Resolution

High resolution

Where is Waldo?

Spy

What Next?

Molecular Probe

PET/SPECT

Where is Waldo?

Fused images

Here's Waldo!

Overview of tumor Scintigraphy

- Tumor-type specific radionuclides
 - -Thyroid cancer: I-131or I-123
 - -Catecholamine-secreting tumors: I-131 or I-123 MIBG
 - –Somatostatin receptor imaging
 - -Radioimmunodetection
 - -PET (F-18 DOPA, Ga-68 DOTA peptides, etc.)
- Non-specific tumor imaging radionuclides -Ga-67
 - -Tl-201
 - -Tc-99m sestamibi
 - -Lymphoscintigraphy
 - -PET (F-18 FDG, C-11 acetate, F-18 choline etc.)

Mechanism of thyroid uptake

Differentiated thyroid carcinoma

- MIBG is an analog of guanethidine, and shares some characteristics with the adrenergic hormone-neurotransmitter, norepinephrine.
- Norepinephrine is synthesized and stored in adrenergic granules, and is secreted by exocytosis. Some of the norepinephrine is secreted and stored again in granules.
- I-123 or I-131 MIBG can enter the metabolic pathway of norepinephrine, in organs with adrenergic innervation, and in organs that process catecholamines for excretion, such as the liver and urinary bladder.

50	в,	R ₂	R ₃
MIBG	н	н	н
CIBG	CI	H	н
FIBG	F	H	н
pAIBG	NH.	H	н
HIBG	OH	H	н
mING8	н	NO.	н
pINGB	NO.	. Н°	н
NHIBG	н°	н	OH
HIMBG	OH	OCH.	н
DHIBG	OH	OH"	н
mAIBG	н	NH.	H
GIBG	CH,N,	H	н
GMI8G	C.H.N.	H	н
MelBG	CH.	H	H

I-131 MIBG study demonstrating high uptake in a left adrenal phaeochromocytoma

A 47-year-old woman with malignant pheochromocytoma underwent diagnostic lowdose I-123 MIBG scintigraphy. In the planar image, it is difficult to determine whether the abnormal uptake in the right upper abdomen exists in the right rib or in the liver. In the SPECT/CT, it is proved that the abnormal accumulation exists in the liver.

A 54-year-old woman with malignant paraganglioma underwent diagnostic I-123 **MIBG scintigraphy. In the** planar image, it is easy to point out the abnormal accumulation in the lower abdomen (narrow arrow), however, it is difficult to detect the abnormal uptake beside the bladder (wide arrow) because of physiological accumulation in the bladder. In the SPECT/CT, it is easy to detect the abnormal MIBG accumulation corresponding to the nodular lesion in the left side of the bladder.

Anterior

Posterior

I-123 MIBG

I-131 MIBG

A 10-year-old boy with neuroblastoma underwent 14.8 GBq (400 mCi) of I-131 MIBG therapy. In the planar image with diagnostic I-123 MIBG, only 3 abnormal uptakes were detected in the upper mediastinum, left lower abdomen, and left thigh. In the planar image with therapeutic high-dose I-131 MIBG, total of 13 abnormal uptakes were detected in the left shoulder, mediastinum, vertebrae, upper and lower abdomen, and in the left thigh.

Somatostatin receptor imaging

- SOMATOSTATIN is a small peptide hormone of 14 amino acids.
- OCTREOTIDE is a somatostatin analogue consisting of eight amino acids. Positive in islet cell tumors, carcinoids, paraganglionomas, gastrinoma, medullary thyroid carcinoma, small cell lung cancers (NEUROENDOCRINE TUMORS).
- Might help in patient selection for clinical trails with somatostatin analogs in the treatment of neuroendocrine cancers.

Peptide receptor targeting

In-111-DTPA-octreotide

What is CEA-Scan?

- A murine monoclonal antibody Fab' fragment.
- When labeled with technetium-99m provides imaging of CEA expressing tumors.

Radioimmunodetection (CEA-Scan)

Overview of tumor scintigraphy

• Tumor-type specific radionuclides

-Thyroid cancer: I-131or I-123

- -Catecholamine-secreting tumors: I-131 or I-123 MIBG
- –Somatostatin receptor imaging

-Radioimmunodetection

- -PET (F-18 DOPA, Ga-68 DOTA peptides, etc.)
- Non-specific tumor imaging radionuclides -Ga-67
 - -Tl-201
 - -Tc-99m sestamibi
 - -Lymphoscintigraphy
 - PET (F-18 FDG, C-11 acetate, etc.)

Ga-67 scan

- Mechanism of tumor localization
 - Adequate blood supply
 - Vascular premeability
 - Specific tumorassociated transferrin receptor
 - Tumor metabolism
- Biological behavior: similar to ferric ion
- Binding to iron-binding molecules, including transferrin, lactoferrin, ferritin, siderophores

Ga-67 scan

Normal Gallium Scan Lymphoma

Sarcoidosis

Tl-201 chloride tumor scan

- •Thallium-201: a potassium analog
- Factors determining tumor cell uptake:
 - Blood flow
 - Tumor viability (Sodiumpotassium ATPase system)
 - •Tumor type (Kaposi's sarcoma, gallium-negative)
- Clearance by kidney, half-life: 73 hrs

Tl-201 chloride tumor scan

AIDS patient with Kaposi's sarcoma of the skin
(A) Tl-201 (+)
(B) Ga-67 (-)
Focal pulmonary Kaposi's sarcoma in left upper lobe

AIDS patient with pneumocystic carinii pneumonia. (A) CXR: bilateral hilar congestion and diffuse interstitial markings (B) Ga-67: increased uptake involving both upper lung zones with less uptake in lower lung zones

Cardiac lymphoma.(A) Tl-201: a defect in the anterior wall(B) Ga-67: heart, left lobe of liver, left epigastric mass

Tc-99m sestamibi

- A lipophilic cationic complex
 - tumor imaging characteristic similar to TI-201
 - Localize in the mitochondria
- Factors determining tumor cell uptake:
 - Blood flow
 - Tumor viability
 - Tumor type
 - Lipophilic cation
- brain tumors, breast cancer, primary bone or soft tissue sarcoma

Sensitivity = 85%; specificity = 89% < 15 mm sensitivity = 55%

From... LARGE system with limited ability to detect 15-20mm breast lesions To.... SMALL system with significant ability to detect ~5mm breast lesions

FIGURE 41. 3D volume rendering of CT of arteries in the neck, thyroid gland, and enlarged parathyroid gland from the anterior (left) and posterior (right) projection in a female patient with a parathyroid adenoma and follicular adenoma of the thyroid. Normal thyroid is seen in yellow. The gray area is a thyroid adenoma with a superior thyroid artery feeding vessel. In the posterior view, the parathyroid adenoma is light green and a feeding vessel is visualized coming off the internal mammary artery from the brachiocephalic trunk.

Lymphoscintigraphy

• Sentinel lymph node.

Lymphoscintigraphy

- Tracer injected into the tumor or surrounding tissue to identify the nodes receiving the lymphatic drainage of that tumor
- Tracers:
 - ^{99m}Tc-sulfur colloid,
 - ^{99m}Tc-phytate
- Injection type:
 - intradermal
 - Peritumoral
 - periareolar
- To localize the proximal or initial portion of the lymphatic chain, efferent from the tumor, for subsequent surgical excision and histologic diagnosis

Positron Emission Tomography

Cyclotron: Produces proton rich radioactive isotopes

Radioisotopes:F-18C-11N-13O-15Ga-68half life:2 hrs20 min10 min2 min68 min

Radiochemistry: less than 3 half lives

Radiolabelled Imaging Compounds: FDG, FLT, FHBG, FESP, F-, NH3, O2, CO2, many C-11 methylated organic compounds

PET TRACERS in Oncology

[F-18]去氧葡萄糖的合成

FDG PET vs. Ga-67 scan

FDG PET vs. I-131 scan

IDC in the rib due to better lesion characterization. difficult to characterize as axillary, rib, or other lesions on PET alone.

European Journal of Nuclear Medicine and Molecular Imaging Vol. 33, No. 3, March 2006

PET in Oncology

- Staging
- Assessing prognosis after therapy

PET indications on NCCN

Cancer	Stage 0	Stage I	Stage II	Stage III	Stage IV	Response Preoperative	Response Post C/T	Recurrence
Esophagus	2A	2A	2A	2A	X	2B	2B	2A
Breast (except Paget's, phyllodes)	X	Х	Х	2B	Х	2B	Х	X
Colon	Х	Х	Х	Х	2A	X	X	2A
Melanoma	Х	Х	2A	2A	2A	Х	2B	2B for local, nodal 2A for distant
Lung (NSCLC)	Х	2A	2A	2A	2A	Х	Х	
Thyroid	Х	Х	Х	Х	Х	Х	Х	2A
Head&neck (oral, pharynx, larynx)	Х	X	Х	2A	2A		2A	
Cervix	Х	Optional except IB2 (2A)	2A	2A	2A except IVB	X		2A
Lymphoma (Hodgkin)	2A	2A	2A	2A	2A	X	2A	

Ovarian cancer

Serum tumor markers and FDG-PET/CT for detection of recurrent cancer

Clinical Application of Nuclear Oncology

- Tumor markers
- Radionuclide imaging
- Radionuclide therapy

Radionuclide therapy

Tumor type	Radiopharmaceutical
Differentiated thyroid carcinoma	I-131
Catecholamine-secreting tumors	I-131 MIBG
Neuroendocrine tumors	In-111 Octreotide, Y-90 DOTATOC,
	Lu-177 DOTATATE
Lymphoma	Y-90 Zevalin
Colon cancer	Sm-153 CEA, Lu-177 CEA, Y-90 CEA
Liver tumor	Y-90 Microsphere
Palliation of bony metastasis	P-32, Sr-89, Sm-153 EDTMP, Re-186 HEDP, Ra-223
Polycythemia vera	P-32

Differentiated thyroid carcinoma

I-131uptake in primary differentiated thyroid carcinoma (arrow) and in rib and pelvic metastases (arrowheads)

Radioiodinated MIBG Therapy

A 36-year-old female with a history of carotid body paraganglioma in 1997 with metastases to the skull, sternum and abdomen in 2006. She underwent surgical removal of T12 vertebral lesions, base of skull metastases and abdominal metastases. The patient was diagnosed with sternal metastases in 2007. The patient was treated with 428 mCi of MIBG (11.6 **GBq).** Anterior and posterior images obtained 1 week after the therapy dose are shown.

Peptide receptor targeted therapy

Non-Hodgkin lymphoma

What is Zevalin?

Zevalin (radio-immunoconiugato)

SNM 2009 Image of the Year

A monoclonal antibody that recognizes a special molecules that called CD20 on the surface of lymphoma cells.

Y-90 microspheres

Y-90 microspheres

11-Nov-2009 28-Dec-2009

Alpha Emitter Radium-223 in Metastatic Prostate Cancer

注射室 Nuclear Medicine The End Thanks for your attention !

